• Title/Summary/Keyword: 면적 강우량

Search Result 325, Processing Time 0.042 seconds

Study on the Network Design of Rainfall for Operation of KHNP Dam (한수원(주) 댐 운영을 위한 강우관측망 설계에 관한 연구)

  • Lee, Yeon-Kil;Jang, Bok-Jin;Jung, Sung-Won;Kim, Tae-Soon;Han, Ki-Hak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.326-330
    • /
    • 2011
  • 댐의 최적운영을 위해서는 강우량, 유량, 토양수분량, 증발산량과 같은 수문자료는 필수적이다. 이중 강우량과 유량자료는 치수 중심의 댐 운영에 가장 중요하게 이용되며, 국가 수자원계획, 이수 및 환경 계획 등에도 다목적으로 활용된다. 강우량은 면적 강우량을 대표할 수 있는 위치에서 관측되어야 점 강우량을 면적 강우량으로 환산하는데서 발생되는 오차를 최소화할 수 있다. 이는 실제 발생되는 연속형 강우량과 강우관측소에서 관측되는 이산형 강우량의 차가 최소화될 때 가능한 일이다. 최근 강우 특성은 급 점진적으로 변화하고 있다. 과거에 비해 매우 시공간적으로 불규칙해졌으며, 특히 짧은 지속시간 동안 많은 양의 강우가 집중되고 있다. 이와 같은 강우 특성 변화는 강우관측망에 반드시 반영되어야 한다. 강우 특성을 반영하여 댐을 효율적으로 운영하기 위해서는 기존 관측망에 대한 재평가가 선행되어야 하며, 재평가된 결과를 토대로 관측망을 개선해야 한다. 이에 따라 본 연구에서는 최근 10개년(기상청)의 강우자료를 Kriging method로 공간 분포시켜 연속형 강우량과 강우관측소에서 관측되는 이산형 강우량의 차가 최소화될 수 있는 강우관측망을 구축하였다. 강우관측망을 구축한 결과, 최소 72개소의 강우관측소가 필요하였다. 기관별로는 한수원(주) 29개소(화천댐 유역, 신설 2개소 포함), 국토해양부 18개소, 한국수자원공사 4개소, 기상청(유인 및 무인) 21개소로 구축되었다. 본 연구에서 설계한 강우관측망은 대략 평균 $100km^2$의 밀도로 구축되었으며, 팔당댐 유역에서 가장 크게 개선되었다.

  • PDF

Estimation of Storm-centered ARF in the Context of Temporal and Spatial Scale Characteristics of Storm Events (강우 사상의 시·공간적 규모 특성을 반영한 호우중심형 ARF 산정)

  • Kim, Eunji;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.181-181
    • /
    • 2018
  • 설계홍수량 산정 시 지점확률강우량을 대상유역 내 면적강우량으로 환산하기 위하여 면적우량 환산계수(areal reduction factor, ARF)를 적용한다. ARF 산정방법은 크게 면적고정형 방법과 호우중심형 방법으로 나뉜다. 면적고정형 방법은 현재 국내 하천설계기준에서 설계강우량 산정 시 활용하고 있는 방법이지만, 동 시간에 발생한 강우사상을 활용하지 않고 지점강우량과 면적강우량의 독립적인 빈도해석을 통해 산정되므로 비현실적인 값이라고 볼 수 있다. 본 연구에서는 강우사상의 공간분포 특성을 효과적으로 반영할 수 있는 레이더 강우 자료를 활용하여 한강권역의 호우중심형 ARF를 활용하였다. 호우중심형 ARF는 지속기간 1, 3, 6, 12, 24시간에 대하여 산정하였으며, 재현기간은 강우 사상의 규모에 따라 총 다섯 구간(0-10, 10-20, 20-50, 50-80, 80-100년)으로 분류하였다. 지속기간 및 재현기간에 따른 호우중심형 ARF는 강우 사상마다 산정되므로 다양한 값이 산재(scattered)되어 있는데, 대푯값을 선정하기 위하여 Weibull 분포의 비초과확률 95%의 값을 추출하였다. 두 가지 방법으로 산정된 ARF는 지속기간에 대하여 로그형태로 증가하였으나, 재현기간에 따른 관계에서는 차이를 보였다. 면적고정형 ARF는 재현기간에 대한 민감도가 매우 낮았으나, 호우중심형 ARF는 재현기간에 따라 감소하였다. 또한 호우중심형 ARF는 지속시간이 길수록 재현기간에 대한 민감도가 점차 낮아졌으며 지속기간 24시간 이후로는 일정한 값을 보였다. 이러한 차이는 레이더 실 강우를 활용한 호우중심형 ARF 산정 시에 면적고정형 ARF 산정과정에서 고려되지 않는 강우의 시 공간적 특성을 반영하기 때문인 것으로 사료된다. 따라서 설계홍수량 산정 시 호우중심형 ARF를 적용한다면 보다 현실적인 값을 제시할 수 있을 것으로 판단된다.

  • PDF

Estimation of Areal Reduction Factor in Nam River Watershed (남강댐 유역의 면적우량 감소계수 산정)

  • Lee, Jin-Ho;Ahn, Gyoung-Mo;Ham, Gye-Un;Yoon, Suk-Min;Lee, Tae-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.307-307
    • /
    • 2011
  • ARF(Areal Reduction Factor, 면적우량감소계수)는 지점강우량을 면적 평균 강우량으로 변환하는 환산계수로 정의되며, 유역의 지형학적 특성과 강우의 공간적 분포특성을 반영한 유역단위의 ARF의 개발이 요구된다. 하지만 국내의 ARF는 대부분 한강유역을 대상으로 하고 있어 한강유역과 지형학적, 수문 기상학적 특징이 상이한 유역에 대하여 연구 결과를 적용하기는 많은 제약이 따를 것으로 판단된다. 따라서 본 연구에서는 남강댐 유역의 ARF를 산정하기 위해 7개의 강우관측소(산청, 삼가, 신안, 안의, 운봉, 태수, 함양)로부터 시강우자료(1990년~2010년)를 수집한 후 14개의 재현기간, 6개의 지속시간에 대한 지수형 ARF 회귀식을 산정하였다. 그 결과 남강댐 유역의 지수형 ARF 회귀식의 결정계수는 0.80~0.99로 높은 상관성을 나타내었다. 그리고 남강댐 유역의 ARF와 첨두홍수량의 관계를 분석하기 위해 남강댐 유역내의 산청유역을 대상으로 재현기간 100년, 지속시간 24시간에 대한 홍수량을 모의하였다. 그 결과 ARF의 적용 전 후의 첨두홍수량은 10% 이상 감소하는 것으로 나타났다. 따라서 남강댐 유역의 기상학적 특성을 고려한 첨두홍수량 산정을 위해서는 본 연구에서 제안한 ARF 회귀식이 유용할 것으로 판단된다.

  • PDF

Rainfall Estimation Using Meteorological Satellite Image and Conditional Merging Method (기상위성과 조건부 합성기법을 이용한 면적강우량 산정 및 평가)

  • Park, Jung-Sool;Kim, Kyung-Tak;Choi, Yun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.390-390
    • /
    • 2011
  • 본 연구는 기초기술연구회의 위성정보 활용 지원 운영사업(과제명: 위성영상을 이용한 하천정보 생산 및 활용에 관한 연구)의 연구비 지원에 의해 수행되었습니다. 지난 2010년 6월 발사된 천리안 위성이 약 9개월간의 정지궤도 시험운행을 마치고 본격적으로 위성자료 서비스를 시작함에 따라 한반도 악기상 관측 및 예측 정확도 향상에 기여할 것으로 예상된다. 최근 기후분야 외에도 수자원, 방재, 농업, 해양 등 다양한 응용분야에서 기상위성을 활용하고자 하는 연구가 수행되고 있으며 자료제공 시간의 단축과 기상자료 산출물의 제공으로 천리안 위성은 향후 광범위하게 활용 될 것으로 예상된다. 본 연구는 천리안 위성의 수자원 분야 활용을 위한 기반연구로 천리안 위성과 동일한 채널 특성을 보유한 MTSAT-1R 기상위성을 이용하여 면적강우량을 추정하고 이를 지상관측소를 이용하는 강우보정기법에 적용하며 강우산정 결과를 레이더 및 티센, 크리깅 등과 비교하였다. 강우추정은 NOAA NESDIS의 Power-law 공식을 이용하였으며 지상관측소를 이용한 강우보정은 조건부 합성기법을 적용하였다. 연구대상 유역은 충주댐 유역과 충주댐 유역 상류에 위치한 영월수위표 지점 상류유역을 대상으로 하였으며 레이더 차폐에 따른 레이더 강우량의 감쇄 효과를 분석하고 지형적 특성에 영향 받지 않는 기상위성을 이용한 강우량 산정 기법의 활용성을 제시하였다. 연구결과 레이더 차폐에 영향 받지 않는 영월 수위표 상류유역의 경우 레이더를 이용한 강우량 산정결과와 기상위성을 이용한 결과가 큰 차이가 없으나 전체 유역면적의 절반 정도가 레이더 차폐 지역에 포함되는 충주댐 유역의 경우 레이더를 이용할 경우 20%~35% 가량 강우량이 과소 추정되는 것으로 나타났다. 본 연구를 토대로 산악지형에 의해 레이더 차폐가 발생되는 유역에 대해 기상위성의 활용을 기대할 수 있을 것으로 판단되었다.

  • PDF

Storm-Centered Areal Reduction Factors by Durations and Return Periods Using Rain Fields with Composite of Radar and Gauge Rainfall (레이더 및 지상 합성강우장에 대한 지속시간-재현기간별 호우중심형 ARF)

  • Kim, Eunji;Hyun, Sukhoon;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.285-285
    • /
    • 2016
  • 설계홍수량 산정 시, 지점강우량을 대상 유역 내 면적강우량으로 환산하기 위해 면적우량환산계수(ARF, Areal Reduction Factors)를 적용한다. ARF를 산정하는 방법은 크게 면적고정형법(Fixed-Area Method)과 호우중심형법(Storm-Centered Method)로 나뉜다. 면적고정형법은 현재 국내 하천설계기준에서 활용하고 있는 방법이지만, 공간적 관측밀도의 제약으로 정확한 ARF 산정에는 한계가 있다. 또한 연 최대치계열의 독립적인 빈도해석을 통해 지점강우량과 면적강우량을 산정하므로 동시간(Synchronized)에 발생하는 강우 사상이라고 볼 수 없기 때문에 산정된 ARF는 실제 강우사상으로부터 산정된 값과 편차를 보인다. 반면 호우중심형법은 각각의 강우사상을 분석 대상 유역 중심에 공간전이 시켜 최대 강우량이 발생하도록 하는 방법으로, 레이더 강우 자료를 활용하면 현실적 ARF값의 산정이 가능해진다. 레이더 강우는 기상청에서 제공하는 2007-2012년 홍수기(6-9월)의 10분 단위 단일편파 전국합성 레이더 자료를 활용하였으며, 대상지역으로는 한강 권역을 선정하였다. 그러나 기상청 레이더강우 자료의 경우 가용기간이 아직까지 충분하지 않아 다양한 빈도의 강우사상을 확보하는데 한계가 있어, 보조적으로 한강 권역의 지상강우 관측 자료를 수집하여 높은 재현기간의 강우사상이 부족한 문제점을 해결하고자 하였다. 산정된 레이더 및 지상강우 호우중심형 ARF는 통계적 분석을 통해 비초과확률 90%, 95%의 값을 추출하였으며, 지속시간 1시간, 3시간, 6시간, 12시간, 24시간과 재현기간 0~10년, 10~20년, 20~50년, 50~80년, 80~100년에 대한 호우중심형 ARF 회귀상수를 제시하였다. 비초과확률 95%에서 기존 국토해양부(2011)에서 제시된 ARF와 호우중심형 ARF는 대체로 유사한 경향을 보이고 있었으나, 지속시간이 비교적 긴 12시간, 24시간에서는 호우중심형이 기존 ARF보다 다소 작게 산정되는 패턴을 보이고 있어 설계적용 시 유의해야 할 것으로 사료된다.

  • PDF

Efficient use of AWS data for determining the Disaster Prevention Performance Objectives (방재성능목표 설정의 AWS 자료 활용방안)

  • Kong, So Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.221-221
    • /
    • 2022
  • 방재성능목표란 홍수, 호우 등으로부터 재해를 예방하기 위한 방재정책 등에 적용하기 위하여 처리 가능한 시간당 강우량 및 연속강우량의 목표로, 각 지자체별로 지역특성 및 경제여건 등을 고려하여 지역별 방재성능목표를 설정한다. 지역별 방재성능목표 기준을 설정하기 위해 전국을 168개 티센망으로 분류하고 69개 지점 확률강우량을 활용하여 지방자치단체별 확률강우량을 산정하고, 지방자치단체별 티센면적 비율을 감안하여 각 지자체별 방재성능목표 설정 기준을 마련한다. 이때 확률강우량 산정에 기상청에서 제공하는 종관기상관측(ASOS) 자료를 이용하는데, 종관기상관측(ASOS, Automated Synoptic Observing System)이란 종관규모의 날씨를 파악하기 위하여 정해진 시각에 모든 관측소에서 같은 시각에 실시하는 지상관측으로, 종관규모는 일기도에 표현되어 있는 고기압이나 저기압의 공간적 크기 및 수명을 말하며, 해당 지역의 현재 기상 실시간 제공 및 기상예보에 활용한다. 그러나 ASOS 자료로 산정한 확률강우량을 토대로 설정한 지역별 방재성능목표는 지배관측소개소 및 면적 비율에 따라 강우량이 실제 해당 지역에 내린 강우량에 비해 작거나 크게 산정되어 실제 강우량을 반영하지 못하는 문제가 발생한다. 이에 지진·태풍·홍수·가뭄 등 기상현상에 따른 자연재해를 막기 위해 실시하는 지상관측인 방재성능관측(AWS, Automatic Weather System)을 1997년부터 약 510여개 지점에 설치하여 기상관측자료를 구축하고 있으나, 관측자료가 30년 미만이므로 자료의 일관성 및 신뢰도 확보 등의 문제로 이용하고 있지 않다. 실제로 ASOS 관측소와 AWS 관측소의 시간 강우량 최댓값 차이가 큼에도 불구하고 행안부는 지역별 방재성능목표 수립을 위한 강우량 산정에서 AWS 관측소의 기록은 반영하지 않고 ASOS 관측소 기록만 적용하여 실제 해당 지역의 강우량을 반영하는 방재 대책을 수립하지 못하는 실정이다. 따라서 소규모 유역 및 재해영향평가 등의 경우 인근 지역에 AWS 관측소가 있을 경우, 해당지역의 기상 특성을 대변하는 자료로 보유관측년수가 30년 이상인 AWS 자료의 적극적인 활용이 필요할 것으로 판단된다.

  • PDF

Simulating flood inflow to multipurposed dam on 2020.8.7.~8.8 storm with ONE model (ONE 모형에 의한 2020.8.7.~8.8. 호우의 댐 유입량 모의)

  • Noh, Jaekyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.120-120
    • /
    • 2021
  • 2020년 8월 7일부터 8월 8일까지 호우는 용담댐, 섬진강댐, 합천댐 하류 유역의 막대한 침수피해를 일으켰다. 이들 다목적 댐 유입량의 신뢰도 높은 모의는 홍수기 댐 운영 및 하류하천의 홍수 해석에 필수다. 여기서는 일 유출 모의 기반으로 개발된 ONE 모형을 10분 단위, 1시간 단위로 적용한 결과를 제시하고자 한다. 보통 홍수모의는 사상별로 실시하지만, 여기서는 1월1일부터 12월 31일까지 연속으로 모의한 결과에서 해당 홍수사상 결과를 제시하였다. 3개 다목적 댐의 홍수사상은 8월6일부터 8월 10일까지 5일간으로 설정하였다. 유역면적은 용담댐, 섬진강댐, 합천댐, 각각 930km2, 763km2, 925km2, 총강우량은 각각 490.7mm, 451.9mm, 452.4mm, 첨두유입량은 10분 단위는 각각 4,872.7m3/s, 3,533.7.0m3/s, 2,776.0m3/s, 1시간 단위는 각각 4,394.9m3/s, 3,401.8m3/s, 2,745.6m3/s, 총유입량은 각각 3억8,836만m3, 3억1,324만m3, 3억2,816만m3였다. 첨두유입량 상대오차가 0일 때의 매개변수로 모의한 결과를 제시하며, 총유입량 상대오차(Vq), R2, RMSE, NSE 등으로 평가하였다. 용담댐 결과는 10분 단위 경우 최대면적강우량 7.3mm, 첨두유입량 4,872.4m3/s, 총유입량 3억 8,138만m3, Vq 1.9%, R2 0.968, RMSE 207.347, NSE 0.978였고, 1시간의 경우 최대면적강우량 29.6mm, 첨두유입량 4394.9m3/s, 총유입량 4억157만m3, Vq -8.4%, R2 0.970, RMSE 186.962, NSE 0.982였다. 섬진강댐 결과는 10분 단위 경우 최대면적강우량 9.2mm, 첨두유입량 3,533.3m3/s, 총유입량 2억7,223만m3, Vq 18.4%, R2 0.885, RMSE 808.296, NSE 0.925였고, 1시간의 경우 최대 면적강우량 37.9mm, 첨두유입량 3401.6m3/s, 총유입량 2억7,029만m3, Vq 13.7%, R2 0.907, RMSE 285.544, NSE 0.936였다. 합천댐 결과는 10분 단위 경우 최대면적강우량 5.5mm, 첨두유입량 2,776.2m3/s, 총유입량 3억3,667만m3, Vq -2.7%, R2 0.941, RMSE 191.896, NSE 0.965였고, 1시간의 경우 최대면적강우량 17.0mm, 첨두유입량 2,746.7m3/s, 총유입량 3억1,333만m3, Vq 4.5%, R2 0.965, RMSE 140.739, NSE 0.981였다. 이상 ONE 모형으로 10분, 1시간 단위의 댐 홍수 유입량 모의결과는 높은 신뢰도를 나타냈다.

  • PDF

Decision of Rainfall Time Distribution Method for Storm Sewer Design (우수관로 계획시 확률강우량의 시간분포방법 선정)

  • Park, Jong Pyo;Kim, Mun Mo;Jo, Min Hyun;Lee, Kyoung Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.405-410
    • /
    • 2015
  • 우리나라는 2000년대 이후, 하천 및 수공구조물 계획시 Huff 분포를 지배적으로 사용해 왔다. 그러나 Huff 방법은 호우선정, 평균방법, 지속기간별 동일분포 가정 등 여러 가지 문제를 가지고 있어 극치 호우사상을 적절히 모의하지 못하는 약점이 있다는 의견이 많았다. 본 연구에서는 하천, 수공구조의 계획시 국내에서 주로 사용해 왔던 강우량 시간분포 방법인 Huff 방법이 과연 하수도시설물 계획시 적정한가를 평가하고 중소규모 배수(排水)시설물 설계시 합리적이라고 알려져 있는 ABM 방법의 적용성을 비교, 평가하여 하수도시설물의 계획시 적정한 확률강우량의 시간분포 방법을 제안하고자 한다. 연구대상 지역은 삼척지역이며 기상청 산하 동해관측소 자료를 이용하여 연구를 수행하였다. 삼척지역의 지속기간별 확률강우량을 Huff 방법을 적용하여 시간분포하면 지속기간 2시간, 3시간 호우의 1시간 최대치의 경우 지속기간 1시간 최대치 보다 크게 산정된다. Huff 1분위의 경우 지속기간 1시간 호우는 55.3mm이나 지속기간 2시간, 3시간 호우의 1시간 최대치는 각각 61.8mm, 60.7mm 로 지속기간 1시간 호우보다 더 크게 평가되었다. 이러한 구간별 최다 강우량의 지속기간별 역전현상은 도달시간 1시간이내의 소유역이라 할지라도 지속기간 2, 3시간호우에서 첨두홍수량이 발생할 수 있는 문제점을 내포하고 있다. 지속기간의 개념을 고려하여 빈도별 홍수시 ABM, Huff 방법의 적용성을 검토하였다. ABM 방법의 경우 적용 유역 면적(0.1~2,000ha) 전체에서 지속기간이 길어지면 첨두홍수량 결과가 수렵하는 것으로 검토되었다. 반면, Huff 방법의 경우 유역면적이 커짐에 따라 임계지속기간이 길어진다. 30년 빈도 홍수의 경우 유역면적 0.1~0.5ha 에서는 30분, 1~50ha 에서는 1시간, 80~300ha 에서는 2시간, 500~2,000ha 에서는 3시간이 임계지속기간인 것으로 분석되었다. 소규모 유역에서는 ABM과 Huff 방법의 홍수량 산정결과의 차이가 크지 않았으며 하수도시설물 계획시 적용성이 높은 강우량 시간분포 방법은 유역의 연속성을 고려할 수 있는 ABM 24시간 호우를 이용하는 것이 타당할 것으로 사료된다.

  • PDF

Rainfall Analysis using Spatial Data Analysis Technique (공간분석기법에 의한 강우분석에 관한 연구)

  • Lee, Joon-Hak;Jung, Young-Hun;Oh, Kyoung-Doo;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1520-1524
    • /
    • 2010
  • 지상에 설치된 우량관측소를 통해서 자료가 수집되는 강우자료는 공간적으로 분포하고 있는 공간자료(spatial data)이며, 지점자료(point data)이다. 공간자료(spatial data)는 공간적으로 분포되지 않는 일반 데이터와는 다른 속성을 가지고 있으며 공간적인 위치가 데이터 발생의 중요한 변수로 적용될 수 있고, 인접 데이터와의 상관관계가 고려되어야 한다. 본 연구는 공간분석기법을 이용하여 보다 효과적인 강우분석을 하기 위한 것으로서, 우리나라 총 679개 우량관측소의 2008년 강우자료를 바탕으로 티센(Thiessen) 기법, IDW(Inverse Distance Weighted), 스플라인(Spline) 등과 공간통계학적 방법인 크리깅(Kriging)을 이용하여 주요 유역별 면적 강우량 산정 및 미계측 지역의 강우량 추정을 모의하였다. 본 연구결과 유역별 면적강우량 추정시 티센 및 경향면 분석법, Natural Neighbor 방법은 일부 과다 추정되는 것으로 나타났고, IDW, RBF, 크리깅의 방법은 큰 차이를 보이지 않았으나, 미계측 지역의 강우량 추정에는 일반크리깅의 정확도가 비교적 높은 것으로 나타났다.

  • PDF

Optimal Network Design for the Estimation of Areal Rainfall (면적강우량 산정을 위한 관측망 최적설계 연구)

  • Lee, Jae-Hyeong;Yu, Yang-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • To improve the accuracy of the areal rainfall estimates over a river basin, the optimal design method of rainfall network was studied using the stochastic characteristics of measured rainfall data. The objective function was constructed with the estimation error of areal rainfall and observation cost of point rainfall and the observation sites with minimum objective function value were selected as the optimal network. As a stochastic variance estimator, kriging model was selected to minimize the error terms. The annual operation cost including the installation cost was considered as the cost terms and an accuracy equivalent parameter was used to combine the error and cost terms. The optimal design method of rainfall network was studied in the Yongdam dam basin whose raingauge numbers need to be enlarged for the optimal rainfall networks of the basin.