• Title/Summary/Keyword: 면적평균 확률강우량

Search Result 25, Processing Time 0.036 seconds

The Estimation of Areal Reduction Factor in Nakdong river basin by Point Mean and Areal Frequency Based Rainfalls (지점평균 및 면적확률강우량에 의한 낙동강유역의 면적감소계수 산정)

  • Lee, Ki-Sung;Kim, Sang-Dan;Kim, Hong-Tae;Hong, Seung-Jin;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1985-1990
    • /
    • 2006
  • 수문설계시 설계자들의 주된 관심사는 어떤 한 지점의 강우량보다는 유역 평균강우량에 있다. 그러나 우리가 얻을수 있는 강우량은 특정 지점에 설치된 관측소에서 관측되는 지점강우량이므로 이를 이용하여 유역에 대한 면적평균확률강우량을 산정해야 한다. 그러나 면적평균확률강우량을 산정하기 위해서는 복잡한 자료처리과정을 거쳐야 하며 수문분석시 마다 이러한 과정을 반복한다는 것은 매우 번잡스러운 일이다. 따라서 비교적 산정이 손쉬운 지점평균확률강우량을 사용하여 면적평균확률강우량으로 손쉽게 전환할 수 있는 면적감소계수가 대안이 될 수 있다. 현재 우리나라는 건설교통부에서 제시하고 있는 면적감소계수를 사용하고 있으나, 이는 한강유역의 강우관측소를 이용하여 산정하였기 때문에 이를 한강유역과 지형학적, 수문 기상학적 특징이 상이한 지역에 적용하기에는 많은 제약이 따른다고 생각된다. 본 연구에서는 낙동강 유역을 대상으로 자료계열의 빈도해석을 통하여 기존의 지점평균확률강우량과 면적확률강우량을 산출한 후, 이를 이용하여 지점평균확률강우량을 면적확률강우량으로 전환할수 있는 면적감소계수 회귀곡선식을 산정하였다. 따라서 본 연구에서 제시하는 면적감소계수는 낙동강 유역에 대하여 지점평균확률강우량을 면적확률강우량으로 손쉽게 환산할 수 있는 한 가지 방안이 될 것으로 생각된다.

  • PDF

The Estimation of Areal Reduction Factor(ARF) in Han-Rwer Basin (한강유역의 면적감소계수 산정)

  • Jeong, Jong-Ho;Na, Chang-Jin;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.173-186
    • /
    • 2002
  • Rainfall-runoff model is usually used in estimating the design flood, and the most important elements in this model are probable rainfall and unit hydrograph. So, it is the most important step to estimate probable rainfall reasonably and exactly. If a basin area exceeds a certain scale, probable areal rainfall should be used as probable rainfall, but, Probable point- mean rainfall be usually used in Korea. Consequently, probable rainfall is used too high and unit hydrograph is used relatively too low. Thus the improvement is unavoidable. So, in this study, the parameters are proposed that transform the 1day, 2day rainfall to 24hr, 48hr rainfall, and areal rainfall data series are composed by using the same time rainfall data. Also, the areal reduction factor(ARF) is developed as the increase of area by the calculated probable point mean rainfall and probable areal rainfall by frequency analysis in Han-River basin. It can be the measure to easily transform probable point- mean rainfall to probable areal rainfall.

Estimation of Areal Reduction Factor(ARF) Based on Temporal and Spatial Characteristics of Basin (유역의 시${\cdot}$공간적 분포특성을 고려한 면적감소계수 산정)

  • Yoon, Yong Nam;Kang, Seong Kyu;Jang, Su Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1112-1116
    • /
    • 2004
  • 설계홍수량 산정시 인력자료로 이용되는 확률강우량은 동시간 강우에 의한 감소효과가 고려된 면적평균확률강우량이어야 하며, 이는 지점평균확률강우량에 면적감소계수를 곱하여 산정하게 된다. 본 연구에서는 유역의 시${\cdot}$공간적 특성이 반영되도록 면적감소계수(Areal Reduction Factor, ARF)를 산정하여 특정유역에 적용할 수 있도록 제시하였다. 현재 우리나라에서 사용하고 있는 면적감소계수는 대부분 면적고정형 방법을 이용하여 산정한 한강유역의 면적감소계수로, 유역 특성 및 강우 특성이 다른 중${\cdot}$소규모하천에 적용이 어려운 실정이다. 이에 중규모 하천인 삽교천의 면적감소계수를 산정하고, 중요한 요소의 하나인 면적 증분방향에 대한 기준을 제시하고자 하였으며, 면적 증분방향과 관측소간의 영향을 시${\cdot}$공간적으로 분석함으로써 유역에 적합한 면적감소계수산정방법에 대한 바람직한 방향을 제시할 수 있었다.

  • PDF

A Study on Estimation of Areal Rainfall Quantiles using AWS Rainfall Data (AWS 강우자료를 이용한 면적확률강우량 산정에 관한 연구)

  • Kim, Min Seok;Son, Hong Min;Hwang, Sung Hwan;Moon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.184-184
    • /
    • 2015
  • 수공구조물의 설계 시 확률강우량의 산정은 매우 중요하다. 따라서 확률강우량 산정을 위한 강우지점의 선정 및 산정방법의 표준화는 매우 중요하다고 할 수 있다. 현재 확률강우량 산정시 대부분은 기상청의 지상기상관측지점과 국토교통부의 산하 지점의 시 단위 또는 일 단위의 강우자료를 활용하여 확률강우량을 산정하고 있다. 또한 면적확률강우량의 산정시에는 원칙적으로 해당 유역내 외에 다수의 관측소 존재 시 Thiessen 가중평균을 이용하여 동시간 임의시간 연최대치 면적강우량자료 계열을 작성하고 빈도해석을 실시해야하지만, 동시간 강우량자료의 수집의 어려움으로 지점 확률강우량을 산정하고 Thiessen 가중평균을 적용 후, 면적우량환산계수를 곱하는 방법을 사용하고 있다. 본 연구에서는 서울의 도림천 유역을 중심으로 기상청의 지상기상관측지점(SSS, Surface Synoptic Stations)과 품질관리를 실시한 방재기상관측지점(AWS, Automatic Weather Stations)의 분 단위 강우자료를 활용하여 강우관측지점 선정과 자료기간에 따른 동시간의 면적확률강우량을산정하고 비교분석하였다. 이는 향후 면적확률강우량 산정방안의 개선 및 보완에 큰 도움이 될 것으로 판단된다.

  • PDF

The Estimation and Analysis of Areal Reduction Factor Applying Hydrologic Characteristics in Urban Basin of Jeju Island (수문학적 특성을 적용한 제주 도심지유역의 ARF 산정 및 분석)

  • Kang, Myung-Su;Yang, Sung-Kee;Lee, Jun-Ho;Yang, Se-Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.432-432
    • /
    • 2017
  • 국내에서 설계홍수량 산정시, 실무 적용성이 높은 설계강우-유출 모형을 채택하고 유출모형으로는 단위도 방법을 적용하여 설계홍수량을 산정한다. 설계홍수량을 산정함에 있어 설계강우-유출관계 모형을 적용하기 위한 필수요소로 확률강우량 산정이 선행되어야 한다. 확률강우량은 유역면적이 25.9 m를 초과할 경우 면적평균확률강우량을 사용하여야하나 지점평균확률강우량을 주로 사용하고 있다. 이는 해당 유역 강우의 공간적 분포를 고려하고 있지 않기 때문에 각 강우관측소에서 관측되는 지점 강우자료를 면적평균확률강우량으로 산정하는데 매번 복잡한 자료처리과정을 거쳐야 하는데 있다. 따라서 비교적 산정이 간편한 지점평균확률강우량을 사용하여 면적평균확률강우량으로 손쉽게 전환할 수 있는 각 유역별 ARF(Areal Reduction Factor) 의 필요성이 대두된다.(이등, 정등 2002) 본 연구에서는 일반적으로 유역의 강우 빈도해석시 이용되는 면적고정형 방법을 사용하여 표본면적에 대하여, 설계홍수량 산정요령(국토부, 2012)에 제시 된 4대강 유역의 ARF와 제주도 한천유역의 수문학적 특성을 반영한 ARF를 산정하여 비교 하였다. 표본면적($100km^2$)에 대하여 기존 4대강 유역의 ARF와 본 연구에서 산정된 ARF 비교 결과 권역별, 빈도별, 지속시간에 따른 ARF는 제주 도심지 유역 기준 최대 18.63%(영산강유역) 작게 산정되었음을 확인하였다. 이러한 결과는 향후 해당유역의 수문학적 특성 미반영으로 인해 설계홍수량이 과다 및 과소 산정되어 안정적인 수공구조물 결정을 저해하는 중요 요소로 작용 될 수 있어 제주도 전 유역에 적용 가능한 ARF 산정 및 기준 설정 등의 조치가 요구된다.

  • PDF

Estimation of Areal Reduction Factor in Nam River Watershed (남강댐 유역의 면적우량 감소계수 산정)

  • Lee, Jin-Ho;Ahn, Gyoung-Mo;Ham, Gye-Un;Yoon, Suk-Min;Lee, Tae-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.307-307
    • /
    • 2011
  • ARF(Areal Reduction Factor, 면적우량감소계수)는 지점강우량을 면적 평균 강우량으로 변환하는 환산계수로 정의되며, 유역의 지형학적 특성과 강우의 공간적 분포특성을 반영한 유역단위의 ARF의 개발이 요구된다. 하지만 국내의 ARF는 대부분 한강유역을 대상으로 하고 있어 한강유역과 지형학적, 수문 기상학적 특징이 상이한 유역에 대하여 연구 결과를 적용하기는 많은 제약이 따를 것으로 판단된다. 따라서 본 연구에서는 남강댐 유역의 ARF를 산정하기 위해 7개의 강우관측소(산청, 삼가, 신안, 안의, 운봉, 태수, 함양)로부터 시강우자료(1990년~2010년)를 수집한 후 14개의 재현기간, 6개의 지속시간에 대한 지수형 ARF 회귀식을 산정하였다. 그 결과 남강댐 유역의 지수형 ARF 회귀식의 결정계수는 0.80~0.99로 높은 상관성을 나타내었다. 그리고 남강댐 유역의 ARF와 첨두홍수량의 관계를 분석하기 위해 남강댐 유역내의 산청유역을 대상으로 재현기간 100년, 지속시간 24시간에 대한 홍수량을 모의하였다. 그 결과 ARF의 적용 전 후의 첨두홍수량은 10% 이상 감소하는 것으로 나타났다. 따라서 남강댐 유역의 기상학적 특성을 고려한 첨두홍수량 산정을 위해서는 본 연구에서 제안한 ARF 회귀식이 유용할 것으로 판단된다.

  • PDF

Analysis Method for Spatial Distribution of Design Storms (설계호우의 공간분포 분석 방법)

  • Kim, Nam Won;Won, Yoo Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.604-609
    • /
    • 2004
  • 일반적으로 설계호우(확률강우량, PMP 등)는 유역중심에서의 추정되고, 이 값을 유역의 평균강우량으로 이용한다. 그러나, 실제호우는 유역의 형상에 대해 지속기간 동안 균일하게 발생하지 않으려, 이러한 현상을 분석에 적절히 고려하기 위해서 호우의 공간분포에 대한 분석이 필요하다. 또한 유역면적이 크고, 소유역으로 분할된 중${\cdot}$대규모 유역조차도 균일한 설계호우 값을 적용함으로써 평균강우량 및 출력 값을 과대하게 산정할 수 있다. 따라서 본 연구에서는 설계호우의 공간분포를 기왕의 실제호우로부터 가상호우의 형태를 가정하였으며, 이 가상호우의 형태에 따라 설계호우를 대상유역에 공간분포시켜 평균강우량을 재산정하는 절차를 예를 들어 상세히 기술하였다.

  • PDF

Decision of Rainfall Time Distribution Method for Storm Sewer Design (우수관로 계획시 확률강우량의 시간분포방법 선정)

  • Park, Jong Pyo;Kim, Mun Mo;Jo, Min Hyun;Lee, Kyoung Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.405-410
    • /
    • 2015
  • 우리나라는 2000년대 이후, 하천 및 수공구조물 계획시 Huff 분포를 지배적으로 사용해 왔다. 그러나 Huff 방법은 호우선정, 평균방법, 지속기간별 동일분포 가정 등 여러 가지 문제를 가지고 있어 극치 호우사상을 적절히 모의하지 못하는 약점이 있다는 의견이 많았다. 본 연구에서는 하천, 수공구조의 계획시 국내에서 주로 사용해 왔던 강우량 시간분포 방법인 Huff 방법이 과연 하수도시설물 계획시 적정한가를 평가하고 중소규모 배수(排水)시설물 설계시 합리적이라고 알려져 있는 ABM 방법의 적용성을 비교, 평가하여 하수도시설물의 계획시 적정한 확률강우량의 시간분포 방법을 제안하고자 한다. 연구대상 지역은 삼척지역이며 기상청 산하 동해관측소 자료를 이용하여 연구를 수행하였다. 삼척지역의 지속기간별 확률강우량을 Huff 방법을 적용하여 시간분포하면 지속기간 2시간, 3시간 호우의 1시간 최대치의 경우 지속기간 1시간 최대치 보다 크게 산정된다. Huff 1분위의 경우 지속기간 1시간 호우는 55.3mm이나 지속기간 2시간, 3시간 호우의 1시간 최대치는 각각 61.8mm, 60.7mm 로 지속기간 1시간 호우보다 더 크게 평가되었다. 이러한 구간별 최다 강우량의 지속기간별 역전현상은 도달시간 1시간이내의 소유역이라 할지라도 지속기간 2, 3시간호우에서 첨두홍수량이 발생할 수 있는 문제점을 내포하고 있다. 지속기간의 개념을 고려하여 빈도별 홍수시 ABM, Huff 방법의 적용성을 검토하였다. ABM 방법의 경우 적용 유역 면적(0.1~2,000ha) 전체에서 지속기간이 길어지면 첨두홍수량 결과가 수렵하는 것으로 검토되었다. 반면, Huff 방법의 경우 유역면적이 커짐에 따라 임계지속기간이 길어진다. 30년 빈도 홍수의 경우 유역면적 0.1~0.5ha 에서는 30분, 1~50ha 에서는 1시간, 80~300ha 에서는 2시간, 500~2,000ha 에서는 3시간이 임계지속기간인 것으로 분석되었다. 소규모 유역에서는 ABM과 Huff 방법의 홍수량 산정결과의 차이가 크지 않았으며 하수도시설물 계획시 적용성이 높은 강우량 시간분포 방법은 유역의 연속성을 고려할 수 있는 ABM 24시간 호우를 이용하는 것이 타당할 것으로 사료된다.

  • PDF

Uncertainty Analysis of Spatial Characteristics Related to Probability Rainfall Estimation Using Sequential Indicator Simulation (Sequential Indicator Simulation을 이용한 확률강우량의 공간적 불확실성 평가)

  • Hwang, Soonho;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.350-350
    • /
    • 2017
  • 저수지의 설계홍수량 산정 시 인근의 기상관측 자료를 활용하고 있으나 인근에 기상관측 자료가 없거나 저수지 배후 유역이 큰 경우에는 단일 기상관측 자료를 이용하기에는 한계가 있다. 따라서 실무적으로 지점별 기상관측소의 자료를 이용하여 설계홍수량을 산정할 때에는 각 관측소 자료를 이용하여 확률강우량을 산정하고 Thiessen 가중평균을 한 후 면적우량환산계수 (ARF)를 곱하여 사용하고 있는데, Thiessen 방법의 경우 방법이 간단하지만 지형 고도 효과는 무시되고 우량계의 지배면적에 의한 우량계의 분포 상태만을 고려하게 된다. 그러므로 설계홍수량 산정시 사용되는 Thiessen 방법은 공간적 불확실성을 내포하고 있고, 특히 소규모 저수지의 설계홍수량을 산정하는 경우에는 저수지 유역의 국소적인 특징을 나타내기 어렵다. 본 연구에서는 설계홍수량 산정 시 저수지 위치에 해당하는 확률강우량의 공간적 불확실성을 평가하기 위하여 SIS(Sequential Indicator Simulation) 방법을 이용하였다. SIS 방법은 Kriging 기법과 마찬가지로 베리오그램으로부터 얻어지는 공간적 상관관계를 기반으로 하고 있는 방법으로 Kriging 기법과 달리 공간분포의 국소적인 특성을 평가할 수 있다는 장점을 가지고 있다.

  • PDF

Development of an Estimation Method for Travel Time (도달시간 산정 방법의 개발)

  • Jeong, Jong-Ho;Keum, Jong-Ho;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.715-727
    • /
    • 2002
  • The travel time of a flood through a river reach can be estimated by dividing the river length by the mean velocity with which the flood passes downstream. It is closely related to storage constant for the watershed routing of a flood. There are so many empirical formulas available for the estimation of travel time but the results computed generally show great different depending on individual formulas. In the present study, the mean velocity data computed in the process of water surface profile computation for a probability flood through more than 100 different river reaches were collected along with the mean river bed slope of each river reach. And then, a regression analysis is made between the mean river bed slope and the mean velocity, which showed a wide scatter along the mean regression curve, which appears to be due to the different in the magnitude of probability rainfall and size of watershed area. Therefore, methods have been developed to remove the effect of these factors and generalized empirical equation is proposed to relate the mean velocity to mean river bed slope of a reach. Hence, if the mean river bed slope of a river reach is estimated from the longitudinal river profile, the mean velocity can be computed by the generalized equation along with the probability rainfall and watershed area of the river reach under consideration, which leads to the estimation of travel time through a river reach.