• 제목/요약/키워드: 면내 및 면외 하중들

Search Result 2, Processing Time 0.016 seconds

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

Buckling Characteristics of Ship Bottom Plate - On the Stiffener Restraint Effects - (선박 선저외판의 좌굴특성에 관한 연구 - 보강재의 구속영향 검토 -)

  • Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.130-138
    • /
    • 1994
  • Bottom plates of empty hold are subjected to not only water pressure but also bi-axial inplane loads, specially in the alternate full loading full loading condition of bulk carrier. This kind of plate behaviours is very difficult to be explained and to be estimated using common buckling design guide in the initial design stage of hull structure, therefore, some more concrete studies for this plate structure was performed based on the currently developed buckling estimation formula. In this buckling formula, torsional stiffness effects of edge stiffener are included additionally and effects of elastic buckling strength of plate panel are treated as characteristic value problem. Also considering boundary stiffener effects and inplane and lateral loading, evaluation of bottom plate scantling using this formula, calculated results using various classification regulation of buckling strength and results of first report approach are compared each other and useful guides using developed formula for bottom plate scantling design are discussed.

  • PDF