• Title/Summary/Keyword: 면내성질

Search Result 14, Processing Time 0.009 seconds

전자처리 스페클 패턴 간섭법에 의한 2차원 면내변위 측정에 관한 연구

  • 김경석;김형수;양승필;최형철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.172-176
    • /
    • 1992
  • 금속의 조면, 불투명 유리 또는 종이 등의 확산 반사면에 레이저광을 조사하면 확산광 가운데 또는 그 상 가운데 보통의 광에서는 볼 수 없는 반점 모양의 형태가 나타나게 된다. 이러한 현상은 레이저의 단색성, 가간섭성, 집속성등의 우수한 성질과 응용 면에 있어서의 풍부한 가능성으로 레이저 응용계측이 연구되어 왔다. 따라서 레이저 개발에 따른 새로운 계측 법이 급속히 진전되는 가운데 그 중에서 구조 및 재료강도의 계측분야의 일환으로 레이저를 이용하여 물체표면의 정보를 갖는 스페클 패턴(speckle pattern)이 변화하는 성질을 이용하여 어떠한 물체를 상온 하에서 인장력에 의한 면내변위를 2차원적으로 측정하고자 한다.

Electronic Structure Calculations of Cubane-type Cu4 Magnetic Molecule (Cubane 구조를 가진 Cu4 분자자성체의 전자구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.119-123
    • /
    • 2016
  • We have studied electronic and magnetic structure of cubane-type Cu magnetic molecule using density functional method. The calculated density of states show that Cu has 3d $x^2-y^2$ hole orbital because of short distances between Cu atom and in-plane 4 ligand atoms. The calculated total energy with in-plane antiferromagnetic spin configuration is lower than those of ferromagnetic configurations. The calculated exchange interaction J between in-plane Cu atoms is much larger than those between out-plane Cu atoms, since the $x^2-y^2$ hole orbital ordering of Cu 3d orbitals induces strong super-exchange interaction between in-plane Cu atoms.

Mechanical Properties of Particle and Fiber Reinforced SMC Composites (입자와 섬유로 보강된 SMC 복합재의 기계적 특성에 관한 연구)

  • 정현조;윤성호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • An analytical model has been developed to predict the elastic properties of a filled resin reinforced by chopped fibers, a three-phase composite such as a filled sheet molding compound(SMC). In the model the matrix material and fillers form an effective matrix. The effective matrix is then considered to be reinforced with long fibers lying in the sheet plane but randomly oriented in the plane. Expressions for the resulting transversely isotropic composite properties are explicitly presented. Using this model, the Young's and shear moduli are calculated for the SMC sample with filler weight fraction of 35% and fiber content of 30%. The same properties are also determined experimentally. The agreement between the calculated and measured elastic moduli is found to be very good for the in-plane properties. However, the out-of-plane properties show a large difference because the effect of voids is not taken into account in the model.

  • PDF

Elastic Buckling Strength of Orthotropic Plate under Combined In-Plane Shear and Bending Forces (면내 전단력과 휨을 동시에 받는 직교이방성판의 탄성좌굴강도)

  • 윤순종;박봉현;정상균
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • In this paper result of an analytical investigation pertaining to the elastic buckling behavior of orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical solution developed for the isotropic plates is extended so that the orthotropic material properties can be taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under combined in-plane shear and bending forces is presented. Brief discussion on the design criteria for the shear and bending interaction is also presented.

  • PDF

Elastic Buckling of Transversely Isotropic Plate with Variable Width (폭이 변하는 Transversely Isotropic 판의 탄성좌굴)

  • Yoon, S.J.;Jung, J.H.
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.35-43
    • /
    • 2002
  • Presented in this paper are the results of an analytical investigation pertaining to the elastic buckling behavior of transversely isotropic plate with variable width subjected to unequal uniaxial compression forces at the ends and in-plane shear forces at the sides. The existing analytical solution developed for the isotropic plates is extended so that the transversely isotropic material properties can be taken into account in the plate buckling analyses. For the derivation of buckling equation the power series solution is employed. Graphical forms of results for finding the buckling strength of tapered plates are presented. In addition, the finite element analysis is also conducted. The results are compared and discussed.

Buckling Behavior of Elastically Restrained Orthotropic Plates (탄성구속된 직교이방성판의 좌굴거동)

  • 윤순종;정상균
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.17-25
    • /
    • 1999
  • In this paper, we present the analytical study results of buckling behavior of elastically restrained orthotropic plates. In the study the boundary conditions of the plate are simply supported at all four edges and elastically restrained by the elastic medium at opposite two longitudinal edges. The energy method is employed in the solution of the problems in which method the buckling coefficient is calculated from the condition that the work-done by the external forces during buckling is equal to the stored elastic strain energy. The results are presented in the graphical from. The equations derived for the orthotropic plate in this study are compared with existing isotropic ones and identical results were observed.

  • PDF

Approximate Solution for Finding the Buckling Strength of Orthotropic Rectangular Plates (직교이방성판의 좌굴강도를 구하기 위한 근사식의 개발)

  • J. H. Jung;S. J. Yoon;S. K. You
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.28-38
    • /
    • 2003
  • In this study, the analytical investigation of orthotropic rectangular plate is presented. The loaded edges are assumed to be simply supported and the unloaded edges could have elastically restrained boundary conditions including the extreme boundary condition such as simple, fixed, and free. Using the closed-form solutions, the buckling analyses of orthotropic plate with arbitrary boundary conditions are performed. Based on the data obtained by conducting numerical analysis, the simplified form of equation for finding the buckling coefficient of plate with elastically restrained boundary conditions at the unloaded edges is suggested as a function of aspect ratio, elastic restraint. and material properties of the plate. The results of buckling analyses by closed-form solution and simplified form of solution are compared for various orthotropic material properties. It is confirmed that the difference of results is less than 1.5%.

Magnetic Properties of Cr/CoPtCr/$SiO_2$Thin Films for High Density Magnetic Recording Media (고밀도 자기기록매체용 Cr/CoPtCr/$SiO_2$ 다층박막의 자기적 성질)

  • Choi, H.;Hong, Y.G.;Kim, C.O.
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.560-564
    • /
    • 1998
  • CoPtCr magnetic layer was fabricated on the Cr underlayer by RF magnetron sputtering and the protective $SiO_2$ layer was deposited at room temperature. As the thickness of Cr underlayer increased, the coercive force of magnetic layer increased, then saturated slightly further increasing Cr underlayer thickness. Maximum coercive force was 860 Oe. It is thought that in-plane arrangement of magnetic phase and magnetic decoupling between the magnetic crystallites could lead to the increase of the coercive force. Post-annealing raised the coercive force exceedingly. and maximum coercive force value was 1650 Oe which was acquired from the sample annealed at 55$0^{\circ}C$ for 1hr.

  • PDF

Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates (점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1043-1049
    • /
    • 2008
  • In this paper, we investigate the static response. natural frequencies and buckling loads of functionally graded material (FGM) plates, using a Navier method. The eigenvalues of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane. bending and shear stiffness of FGM plates art more complicated combination of material properties than a homogeneous element. In order to validate the present solutions, the reference solutions of rectangular plates based on the classical theory are used. The various examples of composite and FGM structures are presented. The present results are in good agreement with the reference solutions.

Seismic Performance Assessment of RC Pier Walls under Cyclic Out-of-plane Loading (면외방향으로 반복하중을 받는 철근콘크리트 벽식 교각의 내진성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.73-83
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete pier walls under cyclic out-of-plane loading and to develop improved seismic design criteria. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize the behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The method is verified a useful tool to assess the seismic performance of reinforced concrete pier walls subjected to cyclic out-of-plane load through comparing with reliable experimental results.