• Title/Summary/Keyword: 멤리스터-CMOS

Search Result 5, Processing Time 0.014 seconds

Primitive IPs Design Based on a Memristor-CMOS Circuit Technology (멤리스터-CMOS 회로구조 기반의 프리미티브 IP 설계)

  • Han, Ca-Ram;Lee, Sang-Jin;Eshraghian, Kamran;Cho, Kyoungrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.65-72
    • /
    • 2013
  • This paper presents design methodology for Memristor-CMOS circuits and its application to primitive IPs design. We proposed a Memristor model and designed basic elements, Memristor AND/OR gates. The primitive IPs based on a Memristor-CMOS technology is proposed for a Memristive system design. The netlists of IPs are extracted from the layouts of Memristor-CMOS and is verified with SPICE-like Memristor model under $0.18{\mu}m$ CMOS technology. As a result, an example design Memristor-CMOS full adder has only 47.6 % of silicon area compare to the CMOS full-adder.

Design of Redundant Binary Adder based on Memristor-CMOS (멤리스터-CMOS 기반의 잉여 이진 가산기 설계)

  • Ahn, Yeongyu;Lee, Sang-Jin;Kim, Seokman;Eshraghian, Kamran;Cho, Kyoungrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.67-74
    • /
    • 2014
  • This paper presents a memristor-CMOS based RBSD adder. Conventional RBSD adders suffer bigger hardware due to the extra logic handling larger number of bits. The purpose of this paper is to improve the silicon surface area and the computation delay of conventional RBSD adders. The proposed method employs memristor-CMOS based circuit. The implementation results shows that the proposed memristor-CMOS based RBSD adder saves the cell area by 45%, and reduces time delay 24% compared to conventional RBSD adders. The proposed RBSD adder design can bring further area saving for large scale designs.

A Reconfigurable Multiplier Architecture Based on Memristor-CMOS Technology (멤리스터-CMOS 기반의 재구성 가능한 곱셈기 구조)

  • Park, Byungsuk;Lee, Sang-Jin;Jang, Young-Jo;Eshraghian, Kamran;Cho, Kyoungrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.64-71
    • /
    • 2014
  • Multiplier performs a complex arithmetic operation in various signal processing algorithms such as multimedia and communication system. The multiplier also suffers from its relatively large signal propagation delay, high power dissipation, and large area requirement. This paper presents memristor-CMOS based reconfigurable multiplier reducing area occupation of the multiplier circuitry and increasing compatibility using optimized bit-width for various applications. The performance of the memristor-CMOS based reconfigurable multiplier are estimated with memristor SPICE model and 180 nm CMOS process under 1.8 V supply voltage. The circuit shows performance improvement of 61% for area, 38% for delay and 28% for power consumption respectively compared with the conventional reconfigurable multipliers. It also has an advantage for area reduction of 22% against a twin-precision multiplier.

Modeling for Memristor and Design of Content Addressable Memory Using Memristor (멤리스터의 모델링과 연상메모리(M_CAM) 회로 설계)

  • Kang, Soon-Ku;Kim, Doo-Hwan;Lee, Sang-Jin;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.1-9
    • /
    • 2011
  • Memristor is a portmanteau of "memory resistor". The resistance of memristor is changed depends on the history of electric charge that passed through the device and it is able to memorize the last resistance after turning off the power supply. This paper presents this device that has a high chance to be the next generation of commercial non-volatile memory and its behavior modeling using SPICE simulation. The memristor MOS content addressable memory (M_CAM) is also designed and simulated using the proposed behavioral model. The proposed M_CAM unit cell area and power consumption show an improvement around 40% and 96%, respectively, compare to the conventional SRAM based CAMs. The M_CAM layout is also implemented using 0.13${\mu}m$ mixed-signal CMOS process under 1.2 V supply voltage.

Recent R&D Trends in Synaptic Devices (시냅스 모방소자 연구개발 동향)

  • Jung, SD.;Kim, Y.H.;Baek, N.S.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • 본고에서는 시냅스의 생물학적 기능과 이를 모방하는 멤리스터, 멤리스터와 CMOS(Complementary Metal-Oxide-Semiconductor) 트랜지스터의 하이브리드, 그리고 멤리스터 기반의 집적회로 구현에 관한 최신 연구개발 동향을 다루었다. 기억과 스위칭을 동시에 수행할 수 있는 시냅스 모방 멤리스터는 Moore의 법칙에 따른 집적도 한계의 도래시점을 지연시킬 수 있으며, 디지털 컴퓨팅의 한계를 극복하여 학습능력을 가지는 지능형 실시간 병렬처리 시스템을 구현할 수 있는 잠재력을 가지고 있다. 또한 멤리스터는 신경세포의 기능을 재해석하는 계기가 되어 뇌과학 발전에도 크게 기여할 것으로 예상된다. 저전력으로 구동하는 지능형 프로세서의 조기 등장을 위해서는 뇌 과학, 나노소재 및 소자기술, 집적회로 설계 및 공정기술, 뉴로컴퓨팅(neuro-computing) 등 다양한 분야의 융합전략이 요구된다.

  • PDF