• 제목/요약/키워드: 멘션

검색결과 24건 처리시간 0.015초

계층적 포인터 네트워크를 이용한 상호참조해결 (Coreference Resolution using Hierarchical Pointer Networks)

  • 박천음;이창기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권9호
    • /
    • pp.542-549
    • /
    • 2017
  • Sequence-to-sequence 모델과 이와 유사한 포인터 네트워크는 입력이 여러 문장으로 이루어 지거나 입력 문장의 길이가 길어지면 성능이 저하되는 문제가 있다. 이러한 문제를 해결하기 위해 본 논문에서는 여러 문장으로 이루어진 입력열을 단어 레벨과 문장 레벨로 인코딩을 수행하고, 디코딩에서 단어 레벨과 문장 레벨 정보를 모두 이용하는 계층적 포인터 네트워크 모델을 제안하고, 이를 이용하여 모든 멘션(mention)에 대한 상호참조해결을 수행하는 계층적 포인터 네트워크 기반 상호참조해결을 제안한다. 실험 결과, 본 논문에서 제안한 모델이 정확률 87.07%, 재현율 65.39%, CoNLL F1 74.61%의 성능을 보였으며, 기존 규칙기반 모델 대비 24.01%의 성능 향상을 보였다.

소셜 빅데이터를 활용한 영화촬영지 관광자원화 방안 -전주 지역의 관광체험 SNS 동향 분석을 토대로- (A Study on Tourism Resource Strategy of Film Location using Social Bigdata based on SNS Trend Analysis of Jeonju Area)

  • 박지영;김건;김찬영;오효정
    • 한국콘텐츠학회논문지
    • /
    • 제16권11호
    • /
    • pp.477-487
    • /
    • 2016
  • 1995년 드라마 <모래시계> 촬영지가 유명 관광지로 각광받고 수많은 관광객들을 불러 모은 이후, 각 지자체는 영화 드라마 촬영을 유치하고자 다양한 노력을 기울이고 있다. 지자체 중에서도 특히 전주시는 국제영화제 개최, 전주영상위원회 및 전주영화종합촬영소 설립 등 촬영을 유치하고자 적극적으로 노력하고 있다. 그러나 이러한 풍부한 기반 환경을 갖췄음에도 불구하고, 촬영 이후에 이를 장기적으로 활용하고자 하는 노력은 타 도시에 비해 미흡한 실정이다. 본 연구에서는 이와 같은 한계를 보완하기 위하여 대표적인 SNS(Social Network Service)인 트위터(twitter)를 대상으로 특정 구문을 포함한 트윗을 수집, 그 추이를 분석하였다. 이러한 트윗 멘션의 내용 분석을 통해, 본 연구는 전주 지역의 촬영지와 관광지에 실제로 방문하는 관광객의 주요 방문 요인을 알아보고, 나아가 촬영지의 관광자원화를 위한 방안을 제안하였다.

텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석 (Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques)

  • 배정환;손지은;송민
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.141-156
    • /
    • 2013
  • 최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.

A Study on Building Knowledge Base for Intelligent Battlefield Awareness Service

  • Jo, Se-Hyeon;Kim, Hack-Jun;Jin, So-Yeon;Lee, Woo-Sin
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.11-17
    • /
    • 2020
  • 본 논문에서는 지능형 전장인식 서비스를 위한 자연어처리 기반 지식베이스 구축 방안에 대해 연구한다. 현재의 지휘통제체계는 수집된 전장정보와 전술데이터를 등록, 저장, 공유 등의 기본적인 수준에서 관리 및 활용하고 있으며, 분석관에 의한 정보/데이터 융합 및 상황 분석/판단이 수행되고 있다. 이는 분석가의 시간적 제약과 인지적 한계로 일반적으로 하나의 해석만이 도출되며 편향된 사고가 반영될 수 있다. 따라서 지휘통제체계의 전장상황인식 및 지휘결심지원 지능화가 필수적이다. 이를 위해서는 지휘통제체계에 특화된 지식베이스를 구축하고 이를 기반으로 하는 지능형 전장인식 서비스 개발이 선행되어야 한다. 본 논문에서는, 민간 데이터인 엑소브레인 말뭉치에서 제시된 개체명 중 의미 있는 상위 250개 타입을 적용하고 전장정보를 적절히 표현하기 위해 무기체계 개체명 타입을 추가 식별하였다. 이를 바탕으로 멘션 추출, 상호참조해결 및 관계 추출 과정을 거치는 전장인식 지식베이스 구축 방안을 제시하였다.