• Title/Summary/Keyword: 메탄 가스 하이드레이트

Search Result 88, Processing Time 0.024 seconds

Repeatability of Methane Hydrate Formation (메탄하이드레이트 생성의 반복성에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.218.1-218.1
    • /
    • 2010
  • 천연가스를 대체하며 21세기 신 에너지원으로 기대되고 있는 메탄 하이드레이트가 주목을 받게된 것은 1930년대 시베리아의 화학 플랜트에서 고압의 천연가스 수송용 파이프라인이 막히는 사고가 빈번하게 발생하여 그 원인을 조사한 결과, 파이프 내에서 가스와 물이 결합하여 하이드레이트를 형성하고, 그것이 파이프의 내벽에 부착되어 파이프를 막고 있다는 것으로 밝혀지면서 천연가스 하이드레이트가 주목을 받게 되었다. 또한 메탄 하이드레이트의 경우 46개의 물분자에 8개의 메탄가스 분자가 포획된 구조로, 그 분자식은 $CH_4{\cdot}5.75H_2O$이다. 따라서 메탄가스와 물의 이론적 용량비가 216:1로써, 표준상태에서 $1m^3$의 메탄 하이드레이트는 $172m^3$의 메탄가스와 $0.8m^3$의 물로 분해된다. 만약 이와 같은 특징을 역으로 이용할 경우 메탄을 주성분으로 하는 천연가스를 물에 포집시켜 인공적으로 하이드레이트를 제조할 수 있기 때문에 천연가스 수송 및 저장의 수단으로써 그 중요성이 커지고 있으며, 액화수송보다 18-24%의 비용절감이 이루어진다고 보고하였다. 그러나 인공적으로 메탄 하이드레이트를 제조할 경우 가스 포집율의 예측이 매우 어려운 것으로 알려져 있다. 따라서 본 연구에서는 동일한 조건에서 메탄 하이드레이트 형성의 반복성 실험을 10회 수행한 결과 과냉도가 클수록 최대최소차이가 줄었고 또한 교반을 시킬 경우도 최대최소차이가 줄어 들었다.

  • PDF

A Study on Methane Hydrate Formation using Zeolite (제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;Kim, Dae-Jin;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.154.2-154.2
    • /
    • 2010
  • 상대적으로 이산화탄소 배출량이 적으며, 기존의 천연가스를 대체할 수 있고, 21세기 신 에너지원으로 기대되고 있는 메탄 하이드레이트(Methane hydrate)는 태평양과 대서양의 대륙사면 및 대륙붕, 남극대륙의 주변해역 등지에서 자연적으로 발생한 메탄 하이드레이트의 분포가 확인되었으며, 그 매장량의 1조 탄소톤 이상으로 기존 화석연료의 매장량이 5천억 탄소톤, 대기중의 메탄가스가 3억 6천만 탄소톤임을 고려할 때 2배에 이르는 막대한 양이라고 보고하였다. 따라서 메탄 하이드레이트는 화석에너지를 대체할 수 있는 차세대 청정 에너지 또는 대체 에너지원으로서의 무한한 잠재력을 가지고 있어 새로운 에너지분야로 크게 주목을 받고 있다. 또한 하이드레이트는 $172m^3$의 메탄가스와 $0.8m^3$의 물로 분해된다. 만약, 특성을 역으로 이용하여 산업적으로 고체화 수송을 할 경우 화수송보다 18-24%의 비용절감이 이루어질 것으로 예상되어진다. 그러나 메탄 하이드레이트를 인공적으로 만들경우 물과 가스의 반응율이 낮아 하이드레이트 형성시간이 상당히 길고 가스 충진율도 낮다. 따라서 본 연구에서는 하이드레이트를 빨리 만들며 가스 충진율도 증가시키기 위하여 증류수와 다공성물질이며 나노세공(Nano pore)을 가지고 있는 제올라이트를 증류수에 첨가하고, 초음파 분산하여 만든 혼합유체를 메탄가스와 반응시켜 하이드레이트 형성 실험을 수행하여 비교 분석하였다. 그 결과 0.01 wt% 제올라이트 혼합유체에서 증류수보다 하이드레이트가 훨씬 빨리 생성되었으며, 메탄가스소모량은 ${\Delta}T_{subc}$=0.5K에서 약 4배 높음을 보였다.

  • PDF

Effect of Carbon Nano Tube for the Methane hydrate formation (메탄 하이드레이트 생성을 위한 탄소나노튜브의 영향)

  • Park, Sung-Seek;Seo, Hyang-Min;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.699-702
    • /
    • 2009
  • 가스하이드레이트(Gas Hydrate)는 특정한 온도와 압력조건하에서 물분자로 이루어진 공동 내로 메탄, 에탄, 프로판 등의 가스가 들어가 물분자와 상호 물리적 결합으로 형성된 외관상 얼음과 비슷한 고체 포유물로 자연상태에 존재하는 하이드레이트의 주 성분이 메탄(Methane)인 경우가 대부분인 까닭에 메탄 하이드레이트라고도 불린다. 표준상태에서 $1m^3$의 메탄하이드레이트는 $172m^3$의 메탄가스와 $0.8m^3$의 물로 분해된다. 그러나 메탄 하이드레이트를 인공적으로 만들경우 물과 가스의 반응율이 낮아 하이드레이트 생성시간이 상당히 길고 가스 용해율도 낮다. 따라서 하이드레이트를 빨리 만들며 가스충진율도 증가시킬 수 있는 방법으로 가스 흡착성이 있는 탄소나노튜브(Carbon Nano Tube)를 기계적 분산방법인 초음파 분산(Dispersion)과 화학적 개질에 의한 분산방법인 산화처리분산을 사용하여 탄소나노튜브와 산화탄화나노튜브를 순수한물에 분산하여 나노유체를 만들고, 나노유체와 메탄가스를 반응시켜 메탄하이드레이트를 생성시키는 실험을 수행하였다. 나노유체와 순수한물의 상평형(Phase Equilibrium)은 비슷하였으며, 탄소나노튜브를 0.0005Vol%를 분산한 나노유체와 순수한물의 메탄가스 소모량의 비교한결과 나노유체의 가스소모량의 순수한물보다 ${\Delta}T_{sub}$=0.5K에서는 2배 ${\Delta}T_{sub}$=9.7K에서는 1.6배 증가하였다. 또한 산화나노유체와 나노유체의 메탄 가스소모량은 산화나노유체가 0.01 ~ 0.02mol정도 높았으나 그 효과가 미미하였고, 교반기를 사용하여 RPM300으로 교반시켰을 경우 역시 메탄 가스소모량은 큰 차이가 없었으나 산화나노유체의 경우 메탄 가스소모량이 나노유체보다 급격히 증가함을 확인하였다.

  • PDF

The Effects of DME on Formation of Methane Hydrate (DME가 메탄하이드레이트 생성에 미치는 영향)

  • Lim, Gyegyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.217.2-217.2
    • /
    • 2010
  • 자연 상태에서의 가스하이드레이트의 존재는 물의 빙점보다 높은 온도에서 가스 수송관이 막히는 사고가 관내에 생성된 하이드레이트에 의한 것으로 규명된 이후영구동토지역이나 심해저에 부존되어 있는 막대한 매장량으로 인해 매우 활발한 연구가 최근에 진행되고 있다. 가스하이드레이트는 수분의 량에 비해 대량의 가스를 함유하므로 인위적인 가스하이드레이트를 제조하기 위하여 여러 가지 연구 중 하이드레이트 반응을 촉진하는 촉진제(promoter)와 생성을 억제하는 억제제(inhibitor)를 찾는 연구가 활발히 이루어지고 있다. 계면활성제와 고분자물질이 이들의 다양한 첨가제로 현제 사용되고 있다. 이러한 연구에서 메탄가스하이드레이트 형성에 영향을 미치는 대상물질로 선택한 DME(Dimethane Ether)는 산소 함유율이 34.8wt%인 함산소연료로 최근 신에너지로 부상하고 있으며, 해외 가스전 개발과 맞물려서 상용화단계에 들어와 있다. DME의 물리화학적인 특성으로는 상온의 온도에서 약5기압의 압력으로 액화 시킬 수 있다. 마취성이 강한 디에틸에테르와는 달리 마취성이 없을 뿐만 아니라 인체에 무해한 무색기체로 세탄가가 60가까이되어 경유(세탄가 55) 대체연료로 내연기관의 실증사업이 진행되고 있다. 이러한 특성을 갖고 있는 DME가 메탄가스 하이드레이트 생성에는 어떤 영향을 미치는지를 본 연구에서는 실험을 통해서 분석을 수행하였다. 실험과정에는 세 단계로 구분하여 진행하였는데 첫 번째 단계에서는 메탄가스만으로 하이드레이트 생성조건을 실험분석하였고, 두 번째 단계에서는 DME가스를 먼저 주입한후 동일 온도에서 메탄가스를 주입시켜 하이드레이트 생성 압력을 실험측정하였다. 마지막 단계에서는 DME가스를 약 두 배 정도 많이 주입한 후 동일 온도에서 메탄가스를 주입하여 하이드레이트 생성 압력을 측정하였디. 이러한 단계별 과정을 다소 온화한 $-5^{\circ}C{\sim}4^{\circ}C$의 온도 범위에서 반복적으로 수행하였다. 실험결과에서는 메탄만의 하이드레이트 형성보다 빙점($0^{\circ}C$) 이하의 온도 범위에서는 DME가 메탄하이드레이트 형성에 촉진제 역할을 하였고, 빙점 이상의 온도에서는 억제제의 역할을 하는 것으로 측정되었다. 또한 첨가된 DME의 양에 따라 촉진제의 역할과 억제제의 역할에 확연한 차이를 보였다. 추후 실험에서는 좀더 넓은 농도, 온도 및 압력범위에서 재현성 실험을 추가로 수행할 것도 제안한다.

  • PDF

A Comparative Study on the Formation of Zeolite-Methane Hyudrate (제올라이트-메탄 하이드레이트 생성에 대한 비교 연구)

  • Park, SungSeek;An, EoungJin;Kim, NamJin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.145.2-145.2
    • /
    • 2011
  • 메탄 하이드레이트는 낮은 온도와 높은 압력 조건에서 물분자들의 격자구조에 메탄가스분자가 포획되어 수소결합으로 형성되는 외관상 얼음과 비슷한 결정성 화합물이다. $1m^3$의 메탄 하이드레이트는 표준상태에서 $172m^3$의 메탄가스와 $0.8m^3$의 물로 분해되며, $-10^{\circ}C{\sim}-20^{\circ}C$의 온도에서는 하이드레이트 입자표면에서 생성되는 얼음막으로 인하여 상압에서도 안정하게 존재하는 자기보존 효과를 가지고 있다. 따라서 이와 같은 특징을 천연가스 수송 및 저장의 방법으로 이용할 경우 $-162^{\circ}C$의 초저온을 만들고 유지시키기 위하여 고가의 설비를 필요로 하는 기존의 LNG 수송방법을 대체할 수 있다. 특히 연간 천연가스 소비량을 0.4 ~ 1.0 million ton으로 가정했을 때, 하이드레이트 수송방법은 LNG 수송에 비해 18 ~ 25% 정도의 비용을 절약할 수 있는 경제적인 방법으로 알려져 있다. 그러나 하이드레이트를 인공적으로 제조할 경우 물분자와 가스분자의 반응율이 낮기 때문에 하이드레이트가 생성되기까지 많은 시간이 소요되며, 하이드레이트에 포획되는 가스분자의 양도 적다. 따라서 본 연구에서는 이와 같은 문제점을 해결하기 위하여 다공성 물질인 천연 제올라이트와 제올라이트 13X를 이용하여 제올라이트 혼합유체를 제조하였으며, 메탄가스와 반응시켜 하이드레이트를 생성시키는 실험을 수행하였다. 그 결과, 하이드레이트 생성 시 천연 제올라이트와 제올라이트 13X 모두 0.01 wt%의 혼합비율에서 가장 좋은 효과를 나타내었으며, 하이드레이트에 포획된 가스의 양은 같은 과냉도 조건에서 천연제올라이트와 제올라이트 13X 혼합유체를 이용하여 하이드레이트를 생성 시켰을 때, 증류수보다 각각 4배, 5배 높음을 보였다. 또한 낮은 과냉도에서 하이드레이트 생성 시 제올라이트, 제올라이트13X 혼합유체에서 하이드레이트 생성시간이 증류수에서 하이드레이트를 생성시킬 때보다 빨라짐을 확인하였다.

  • PDF

Composition and structure analysis of natural gas hydrates

  • 박영준;김도연;박제성;이흔
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.660-662
    • /
    • 2005
  • 본 연구에서는 미 인근 해저에서 ODP로 확인된 부존 하이드레이트 샘플을 다양한 분광학 및 실험적 분석 방법을 통해 시료의 물성 및 특성을 파악하여 부존된 하이드레이트 자원의 성분 파악을 목적으로 하고 있다. 일반적으로 가스 하이드레이트 연구에 있어서 X-ray diffractometer, NMR stectrometer, Raman spectrometer 등 분광학적 분석기기를 이용하여 가스 하이드레이트의 구조 및 성분을 규명한다. 본 연구에서는 실험실에서 인위적으로 만들어진 메탄 하이드레이트와 심해저 천연가스 하이드레이트 층에서 채취된 샘플의 비교 분석을 통하여 심해에 매장되어 있는 천연가스 하이드레이트의 구조 및 성분을 규명하였다 XRD 결과로부터 천연가스 하이드레이트는 sI의 구조를 가지며 NMR 및 Raman 결과에 의하면 하이드레이트 내에 포집되어 있는 가스의 주 성분은 메탄인 것으로 밝혀졌다. 또한 천연가스 하이드레이트를 이용한 이산화탄소의 치환 실험을 통하여 심해저 천연가스 하이드레이트 층의 이산화탄소 저장 매체로의 활용 가능성을 조사하였다.

  • PDF

Study of Effective sI Hydrate Inhibitor on Re-formation of Dissociated Gas (해리가스의 하이드레이트 재생성 억제에 적용할 효과적인 구조I 하이드레이트 억제제 연구)

  • Kang, Seong-Pil;Lee, Jonghyub;Kim, Kisub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.124.2-124.2
    • /
    • 2011
  • 천연의 메탄 하이드레이트를 생산하기 위한 방법으로 몇 가지가 알려져 있으나 최근의 연구 결과로는 감압법이 가장 효과적이며 경제성을 확보할 수 있다고 알려져 있다. 하지만 이 방법을 이용한 메탄 하이드레이트 개발생산 시에는 해리된 물과 가스가 동시에 생산유체로 발생하여 수송되며, 생성수에는 하이드레이트 전구체라고 알려진 미완의 하이드레이트 구조체가 남게 된다. 생산유체는 낮은 해수온도에 노출되어 가스 하이드레이트가 쉽게 재생성될 가능성이 높기 때문에 안정적인 가스 생산과 생산시설의 보호를 위해서는 적절한 가스 하이드레이트 재성성 억제대책이 필요하다. Kinetic 억제제의 적용이 많이 이루어지고 있는 가스전에서의 경험을 바탕으로 투여해 보는 시도를 하고 있지만 sII인 천연가스 하이드레이트에서의 억제효과와 비교하여 저하된 결과가 보고되고 있다. sI과 sII는 메커니즘의 차이로 인해 억제제의 성능이 다르게 나타난다. sI인 메탄 하이드레이트에 대하여 kinetic 억제제의 효과를 살펴보았고 이온성액체를 적용한 효과적인 sI 하이드레이트 억제기법을 보고한다. 또한 기존의 sII 억제제와 혼합하여 시너지효과를 얻을 수 있음을 확인하였다.

  • PDF

Dependence of Drawdown Pressure on the Hydrate Re-formation during Methane Hydrate Production and Its Inhibition with Hydrate Inhibitors (천연가스 하이드레이트 생산시 유발되는 하이드레이트 재생성의 압력효과 및 억제제의 저해효과)

  • Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.148.2-148.2
    • /
    • 2011
  • 천연의 메탄 하이드레이트를 생산하기 위한 방법으로는 크게 다음의 세 가지가 알려져 있다; 감압법, 열 자극법, 저해제 주입법. 갑압법이 가장 경제성이 높은 방법으로 보고 있으며, 이를 활용한 개발생산 시에는 해리 이후의 잔류 물에서 하이드레이트 전구체라고 알려진 하이드레이트 구조가 남아 있으며 이는 생산된 메탄 가스의 이송 과정에서 하이드레이트 재생성의 위험을 높이게 된다. 하이드레이트 재생성을 방지할 수 있는 한 가지 수단으로는 억제제를 주입하는 방법이 가능한데, 적절한 양을 주입함으로써 생산의 경제성을 높일 수 있다. 최근 들어 kinetic 억제제의 적용이 인기를 얻고 있는 바, 수용성 고분자인 이들 억제제를 적용하여 초기 하이드레이트 핵 생성을 지연시킬 수 있다. 이들 kinetic 억제제를 메탄 하이드레이트 생산 과정에서 투여하는 방법을 실험적으로 측정해 보았고, 잔류의 하이드레이트 구조에 대한 존재여부에 대하여 간접적으로 증명해보고자 하였다. kinetic 억제제로는 Poly Vinyl Caprolactam (PVCap)을 선택하였다. 해리압력, PVCap 주입 농도에 변화를 주면서 메탄 하이드레이트 생산, 수송과정에서 발생할 수 있는 하이드레이트 재생성 억제에 대한 효과를 실험적으로 측정하였다.

  • PDF

Phase Equilibria of Hydrates in Porous Media: Effect of Pore size and Salinity (다공성 매질에서의 하이드레이트 상평형 측정: 기공크기 및 염의 영향)

  • Lee, Seung-Min;Cha, In-Uk;Lee, Ju-Dong;Seo, Yong-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.545-548
    • /
    • 2009
  • 최근 천연가스 개발의 중요성이 대두되면서 심해저 퇴적층에 존재하고 있는 천연가스 하이드레이트 개발에 많은 연구가 진행되고 있다. 본 연구에서는 심해저 퇴적층에 부존하는 가스 하이드레이트 조건과 유사하게 하기위해 3 wt% 농도의 염수를 다공성 실리카 젤 기공에 넣어 사용하였다. 기공의 직경에 따른 영향을 알아보기 위해 기공 직경이 각각 6.0, 15.0, 30.0 nm인 실리카 젤을 사용하여, 천연가스 주성분인 에탄, 프로판, 메탄+프로판 하이드레이트의 3상 (H-Lw-V) 평형을 측정하였다. 그 결과 기공의 크기가 작아질수록 각각의 벌크 상태의 에탄, 프로판, 메탄+프로판 하이드레이트에 비해 하이드레이트의 평형조건이 온도는 낮아지고 압력이 높아지는 저해효과가 커짐을 알 수 있었다. 실험값으로 부터 기공 내의 물과 하이드레이트상 사이의 계면장력 값을 Gibbs-Thomson식에 의해 구할 수 있으며, 열역학 계산을 통하여 실험값과 비교하였다. 본 연구에서 얻어진 결과는 심해저 천연가스 개발, 이산화탄소 심해저장 등의 가스 하이드레이트 응용 연구에 유용한 기초 자료가 될 것이다.

  • PDF

Microscopic Analysis on New Water-soluble Hydrate Systems (새로운 수용성 하이드레이트 시스템에 대한 미세 분광학적 분석연구)

  • Lee, Jong-Won;Lu, Hailong;Moudrakovski, Igor L.;Ratcliffe, Christopher I.;Ripmeester, John A.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.215.1-215.1
    • /
    • 2010
  • 가스 하이드레이트는 작은 고체 부피 내에 막대한 양의 가스를 저장할 수 있다는 특성으로 인하여, 최근 천연가스 혹은 메탄의 저장 매체로 활용하기 위한 연구가 활발히 진행중에 있다. 하지만 실제 응용을 위해서는 미세구조 분석이 수행되어 하이드레이트 형태로 저장할 수 있는 정확한 저장 용량을 파악할 필요가 있다. 본 연구에서는 여러가지의 고리형 에테르, 고리형 에스테르 및 고리형 케톤 화합물들을 테스트하여 메탄 가스와 반응하는 6가지의 새로운 sII 혹은 sH 하이드레이트 형성제를 파악하였다. 또한 새로이 발견된 형성제 모두에 대하여 하이드레이트 상평형도 측정하였다. 얻어진 상평형 데이터는 하이드레이트 안정영역과 게스트 분자 크기 간에 뚜렷한 상관관계가 있음을 입증하였다. 아울러 형성된 하이드레이트 샘플은 고체 분말 X-선 회절과 고체상 13C NMR 분석을 수행하여 하이드레이트 구조와 게스트 포집률을 조사하였다. 마지막으로, 비슷한 화학 구조식을 갖고 있음에도 2-methyltetrahydrofuran과 3-methyltetrahydrofuran, 혹은 4-methyl-1,3-dioxane과 4-methyl-1,3-dioxolane은 서로 다른 하이드레이트 결정 구조를 보여 주었는데, 이러한 차이는 하이드레이트 결정 구조를 결정짓는 게스트 분자 크기, 즉 임계 게스트 분자 크기를 파악하는 데에도 매우 유용한 정보를 제공할 수 있을 것이라 판단된다.

  • PDF