• Title/Summary/Keyword: 메탄생산

Search Result 353, Processing Time 0.027 seconds

The Promotion Effects on Partial Oxidation of Methane for Hydrogen Production over Co/Al2O3 and Ni/Al2O3 Catalysts (수소생산을 위한 메탄 부분산화용 코발트와 니켈 촉매에서의 조촉매 첨가 효과)

  • Hong, Ju-Hwan;Ha, Ho-Jung;Han, Jong-Dae
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • The Co and Ni catalysts supported on $Al_2O_3$ for partial oxidation of methane producing hydrogen were synthesized using impregnation to incipient wetness. And the promotion effects of metals such as Mg, Ce, La and Sr in partial oxidation of methane over these $Co/Al_2O_3$ and $Ni/Al_2O_3$ were investigated. Reaction activity of these catalysts for the partial oxidation of methane was investigated in the temperature range of 450~$650^{\circ}C$ at 1 atm and $CH_2/O_2$ = 2.0. The catalysts were characterized by BET, XRD and SEM/EDX. The results indicated that the catalytic performance of these catalysts was improved with the addition of 0.2 wt% metal promoter. The Mg promoted $Co/Al_2O_3$ catalyst showed the highest $CH_4$ conversion and hydrogen selectivity at higher temperature than $500^{\circ}C$. The Ce and Sr promoted Ni catalysts superior to Co-based catalysts in the low temperature range. The addition of metal promoter to $Co/Al_2O_3$ and $Ni/Al_2O_3$ catalysts increased the surface area.

Numerical Study of Methane-hydrogen Flameless Combustion with Variation of Recirculation Rate and Hydrogen Content using 1D Opposed-flow Diffusion Flame Model of Chemkin (Chemkin 기반의 1차원 대향류 확산 화염 모델을 활용한 재순환율 및 수소 함량에 따른 메탄-수소 무화염 연소 특성 해석 연구)

  • Yu, Jiho;Park, Jinje;Lee, Yongwoon;Hong, Jongsup;Lee, Youngjae
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.238-248
    • /
    • 2022
  • The world is striving to transition to a carbon-neutral society. It is expected that using hydrogen instead of hydrocarbon fuel will contribute to this carbon neutrality. However, there is a need for combustion technology that controls the increased NOx emissions caused by hydrogen co-firing. Flameless combustion is one of the alternative technologies that resolves this problem. In this study, a numerical analysis was performed using the 1D opposed-flow diffusion flame model of Chemkin to analyze the characteristics of flameless combustion and the chemical reaction of methane-hydrogen fuel according to its hydrogen content and flue gas recirculation rate. In methane combustion, as the recirculation rate (Kv) increased, the temperature and heat release rate decreased due to an increase in inert gases. Also, increasing Kv from 2 to 3 achieved flameless combustion in which there was no endothermic region of heat release and the region of maximum heat release rate merged into one. In H2 100% at Kv 3, flameless combustion was achieved in terms of heat release, but it was difficult to determine whether flameless combustion was achieved in terms of flame structure. However, since the NOx formation of hydrogen flameless combustion was predicted to be similar to that of methane flameless combustion, complex considerations of flame structure, heat release, and NOx formation are needed to define hydrogen flameless combustion.

The Status of Methane Hydrate Development (메탄하이드레이트 개발동향)

  • Kim, Young-In
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.71-84
    • /
    • 2013
  • Most gas hydrates (GH) occur in ocean sediments. Global GH reserves are estimated to be $10^{13}{\sim}20{\times}10^{15}m^3$, which is nearly 1,000 times the amount of current world energy consumption. Methane hydrate (MH) has the potential to be developed into future natural gas resources to replace traditional oil and gas resources, and thus MH production technologies such as depressurization, inhibitor injection, thermal stimulation, and $CO_2-CH_4$ substitution need to be further developed. MH production, which is expected to be in test production until 2014 in Korea, is focused on the development of GH production technologies for use in the commercial production of methane gas. This study compares MH production technology and its ability to meet the twin goals of being both effective and environmentally friendly while taking into consideration the complex phenomena of GH decomposition.

Methane Steam Reforming over $Ni/CeO_2-ZrO_2$ loaded on Fe-Cr Alloy Honeycomb Monolith

  • Lee, Jong-Dae;Kang, Min-Gyu;Lee, Tae-Jun;Cho, Kyung-Tae;Kim, Man-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.427-435
    • /
    • 2007
  • 에너지원으로서 수소를 생산하기 위하여 하니컴 구조를 갖는 모노리스에 10 wt% $Ni/CeO_2-ZrO_2$ 촉매를 담지한 후 메탄의 수증기 개질 실험을 수행하였다. 다른 $CeO_2/ZrO_2$ 몰비를 갖는 촉매들 중에서, $Ni/CeO_2-ZrO_2(CeO_2/ZrO_2=4/1)$촉매가 $700-800^{\circ}C$에서 높은 메탄의 전환율을 보여 주었다. 10wt% $Ni/CeO_2-ZrO_2$ 촉매가 담지된 금속 모노리스 촉매체는 높은 열전도도와 비표면적들로 인하여 좋은 촉매 특성을 보여줌을 확인할 수 있었다. 또한, 금속모노리스 촉매체는 반응물에서 과다의 수증기에 의한 수소 수율에서 크게 영향을 받지 않음을 알 수 있었다. $GHSV=30,000h^{-1}$, 반응물 비$(H_2O/CH_4=3.0)$ 반응온도 $800^{\circ}C$에서 금속모노리스 촉매체는 98%이상의 메탄의 전환율을 보여주었다. 생성물 가스에서 $CO_2/CO$의 비는 수증기/메탄의 반응물비가 증가할수록 수성가스화 반응에 의하여 증가됨을 알 수 있었다.

Global Trends of Unconventional CBM Gas Science Information (비전통 석탄층 메탄가스 학술정보 분석)

  • Cho, Jin-Dong;Kim, Jong-Hyun
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.351-358
    • /
    • 2013
  • Methane burns more clearly than any other fossil fuels. Coalbed methane(CBM) is natural gas contained in coal beds. This gas is usually producted from coal that is either too deep or too poor-quality to be mined commercially. While global coalbed methane resource estimates are rough, they indicate between 84 and 377tcm, which compares with proven natural gas reserves of 180tcm. Coalbed methane resources are currently only produced on a major scale in the United States, Canada, Australia and China. In this study, we analysed total 109 published papers for the CBM during the 1990~2012 periods by the programs of 'web of science'. The results of analysis, the CBM study led by the United States, the follow India and Australia. In subject area(web of sciences), Energy Fuels is 57, Engineering 58 and Geology 41 papers, respectively.

메탄 변환을 위한 아크 플라즈마 반응로의 전산해석

  • Min, Byeong-Il;Choe, Su-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.190.2-190.2
    • /
    • 2016
  • 메탄은 변환을 통해 아세틸렌 및 수소와 같은 에너지 생산에 보다 유용한 기체를 얻을 수 있다. 메탄의 열분해 온도는 약 1,200 K로 알려져 있으며, 그 이상의 고온 환경 및 첨가물을 제공한 경우 효과적인 변환을 기대할 수 있다. 이러한 고온 환경 및 화학반응을 제공할 수 있는 시스템으로 열플라즈마 반응로가 있다. 일반적인 열플라즈마는 아크 방전이나 고주파 유도결합 방전으로 플라즈마 발생기에서 발생시킨 이온화된 열유체로 10,000 K 이상의 초고온과 최대 수천 m/s의 특성을 가지고 있다. 본 연구에서는 효율적인 메탄 변환을 위한 저전력 아크 플라즈마 발생기 및 반응로 내부의 온도 및 속도장을 전산모사하여 열유동 특성을 분석하였다. 아크 플라즈마 토치 영역의 전산해석은 전자기적 현상과 고온 열유동의 유체역학적 현상이 함께 작용하므로 기존에 사용되고 있는 전산유체 역학적인 방법론에 전자기적 현상에 대한 보존 방정식이 결합된 자기유체역학(Magnetohydrodynamic, MHD)방법을 이용하였고, 반응기 내부의 복잡한 열유동은 안정적인 계산이 가능한 상용 전산 유체역학(Computational Fluids Dynamics, CFD) 코드를 MHD 코드를 이용한 전산해석 결과 및 고온 물성치와 결합하여 해석하였다. 전산해석에 사용된 운전 변수로는 방전기체인 아르곤과 수소의 전체 유량을 45 L/min 으로 고정하고 수소의 비율을 0%, 6%, 12.5%, 20%로 하였으며, 각 유량 조건에서 입력 전력을 0.7 ~ 2.5 KW로 변화시켜 전체 15종의 운전조건에 따른 전산해석을 수행하여 각각의 운전변수에 따라 입력전력 기준 오차 1 ~ 28%에 해당하는 결과를 도출하였다. 본 연구를 통해 개발된 전산해석 방법을 이용하여 다양한 조건에서 아크 플라즈마 반응로 내부의 온도 및 속도장에 대한 전산해석 결과를 제시하였고, 효율적인 메탄 변환 공정을 개발하기 위한 아크 플라즈마 반응로의 설계조건 및 운전 조건을 제시할 수 있는 기반을 확보하였다.

  • PDF

An Optimization Study on the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정 최적화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1473-1478
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream is partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream is furtherly cooled and partially condensed through a turbo-expander and the power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream is being cooled by Joule-Thomson expansion valve and is fed to the middle section of the demethanizer. Ethane recovery percent for feed natural gas was set to 75% and methane to ethane molar ratio was fixed as 0.015. Propane refrigeration heat duty was reduced by splitting the feed stream and to exchange heat with side reboiler.

Study on the Performance of a Spark Ignition Gas Engine for Power Generation fueled by the Methane/Syngas Mixture (메탄/합성가스 혼합물에 의한 발전용 SI 가스엔진의 성능에 관한 연구)

  • Cha, Hyoseok;Hur, Kwang Beom;Song, Soonho
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.7-12
    • /
    • 2015
  • Hydrogen is usually produced by using syngas generated by the fuel reforming for natural gas so far. The further process is needed for increasing the hydrogen yield of syngas. However, the process for upgrading the hydrogen yield is accompanied by additional energy sources and economic costs. Thus related studies on the method for using as a mixture in itself have been conducted in order to utilize more efficiently syngas. The effect on the engine performance for methane/syngas mixture of 30kW spark ignition gas engine for power generation has been investigated in this study. As a result, it was found that the combustion phenomena such as the maximum in-cylinder pressure and crank angle at that time have been improved by methane/syngas mixture. Through these, fuel conversion efficiency could be enhanced by about 98% of methane/hydrogen mixture and $NO_x$ emissions could be reduced by about 12% of methane-hydrogen mixture.

Evaluation of Mitigation Technologies and Footprint of Carbon in Unhulled Rice Production (벼 생산 단계에서 탄소발생량과 감축요소 평가)

  • Lee, Deog Bae;Jung, Soon Chul;So, Kyu Ho;Jeong, Jae Woo;Jung, Hyun Chul;Kim, Gun Yeob;Shim, Gyo Moon
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.129-142
    • /
    • 2012
  • This study was carried out to evaluate carbon footprint during unhulled rice production and to compare mitigation technologies of methane, main carbon source during rice production, Carbon footprint of unhulled rice was a sum of $CO_2$ emission of agri-materials manufacture, rice cultivation and waste treatment. It was emitted 1.40 kg $CO_2$ during unhulled rice production, its distribution was 71.1% by $CH_4$ emission of rice cultivation, 11.8% of $N_2O$ emission by nitrogen application and 7.6% of complex fertilizer manufacture. $CH_4$ emission could be mitigated by some technologies; cultivation of the early maturing rice variety emitted lower by 44.4% than the mid maturing variety, intermittent drainage of submerged water by 43.8% than the continuous flooding condition, direct seeding by 32.0% than transplanting cultivation, no-ploughing by 20.9% than ploughing cultivation. It means that LCA on Global Warming Potential and the statistical data on innovated technical practice are key tools to systemize Measurable-Reportable-Verifiable (MRV) system for carbon footprint and carbon emission trade in the farm base.

Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion (전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지 감량에 미치는 영향)

  • Kim, Dong-Jin;Kim, Hye-Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.103-109
    • /
    • 2010
  • Anaerobic digestion has been widely used for the treatment of sludge, which is generated from the municipal and industrial wastewater treatment, for its volume reduction and methane production. Many researches on sludge pre-treatment have been carried out in order to enhance the performance of anaerobic digestion by increasing the hydrolysis of sludge which is the rate limiting step of anaerobic digestion. In this study, the effect of pre-treatment on sludge hydrolysis(solubilization), methane production and sludge reduction by anaerobic digestion after thermal, ultrasonic, and thermal-alkali sludge treatment were compared. Thermal-alkali treatment showed 67 and 70% solubilization with municipal and industrial wastewater sludge, respectively, while ultrasonic treatment and thermal treatment gave similar solubilization efficiency of 40% or more. Methane content of the anaerobic digestion gas reached 45~70% and pretreated sludge gave higher methane content than the control sludge. Methane production of thermal, ultrasonic, and thermal-alkali pre-treatment gave 2.6, 2.7, 3.5 times of municipal control sludge and 3.5, 4.1, 4.2 times of industrial control sludge, respectively. Sludge reduction of pre-treated sludge after anaerobic digestion gave 5~19% point higher than that of control sludge, and thermal-alkali treatment showed higher reduction efficiency than thermal and ultrasonic treatment. The results proved that pre-treatment contributed significantly not only for the methane production but also for the cost reduction of sludge treatment and disposal, and thermal-alkali treatment gave the best performance for the sludge treatment.