• Title/Summary/Keyword: 메타몰픽 HEMT

Search Result 3, Processing Time 0.012 seconds

Simulation Study on the DC/RF Characteristics of MHEMTs (MHEMT 소자의 DC/RF 특성에 대한 시뮬레이션 연구)

  • Son, Myung-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.345-355
    • /
    • 2011
  • GaAs-based metamorphic high electron mobility transistors (MHEMTs) and InP-based high electron mobility transistors (HEMTs) have good microwave and millimeter-wave frequency performance with lower minimum noise figure. MHEMTs have some advantages, especially for cost, compared with InP-based ones. In this paper, InAlAs/InxGa1-xAs/GaAs MHEMTs are simulated for DC/RF small-signal analysis. The hydrodynamic simulation parameters are calibrated to a fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs substrate, and the simulations for RF small-signal characteristics are performed, compared with the measured data, and analyzed for the devices. In addition, the simulations for the DC/RF characteristics of the MHEMTs with different gate-recess structures are performed, compared and analyzed.

Simulation Design of MHEMT Power Devices with High Breakdown Voltages (고항복전압 MHEMT 전력소자 설계)

  • Son, Myung-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.335-340
    • /
    • 2013
  • This paper is for the simulation design to enhance the breakdown voltage of MHEMTs with an InP-etchstop layer. Gate-recess and channel structures has been simulated and analyzed for the breakdown of the MHEMT devices. The fully removed recess structure at the drain side of MHEMT shows that the breakdown voltage enhances from 2 V to almost 4 V as the saturation current at gate voltage of 0 V is reduced from 90 mA to 60 mA at drain voltage of 2 V. This is because the electron-captured negatively fixed charges at the drain-side interface between the InAlAs barrier and the $Si_3N_4$ passivation layers deplete the InGaAs channel layer more and thus decreases the electron current passing the channel layer and thus the impact ionization in the channel become smaller. In addition, the replaced InGaAs/InP composite channel with the same thickness in the same asymmetrically recessed structure increases the breakdown voltage to 5 V due to the smaller impact ionization and mobility of the InP layer at high drain voltage.

A Study on the Breakdown in MHEMTs with InAlAs/InGaAs Heterostructure Grown on the GaAs substrate (InAlAs/InGaAs/GaAs MHEMT 소자의 항복 특성에 관한 연구)

  • Son, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.1-8
    • /
    • 2011
  • One of the most important parameters that limit maximum output power of transistor is breakdown. InAlAs/InGaAs/GaAs Metamorphic HEMTs (MHEMTs) have some advantages, especially for cost, compared with InP-based ones. However, GaAs-based MHEMTs and InP-based HEMTs are limited by lower breakdown voltage for output power even though they have good microwave and millimeter-wave frequency performance with lower minimum noise figure. In this paper, InAlAs/$In_xGa_{1-x}As$/GaAs MHEMTs are simulated and analyzed for breakdown. The parameters affecting breakdown are investigated in the fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs wafer using the hydrodynamic transport model of a 2D commercial device simulator. The impact ionization and gate field effect in the fabricated device including deep-level traps are analyzed for breakdown. In addition, Indium mole-fraction-dependent impact ionization rates are proposed empirically for $In_{0.52}Al_{0.48}As/In_xGa_{1-x}As$/GaAs MHEMTs.