• 제목/요약/키워드: 메타데이터 추출 알고리즘

검색결과 33건 처리시간 0.019초

전력망에서의 다양한 서비스 거부 공격 탐지 위한 특징 선택 방법 (A Method to Find Feature Set for Detecting Various Denial Service Attacks in Power Grid)

  • 이동휘;김영대;박우빈;김준석;강승호
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.311-316
    • /
    • 2016
  • 인공신경망과 같은 기계학습에 기반한 네트워크 침입탐지/방지시스템은 특징 조합에 따라 탐지의 정확성과 효율성 측면에서 크게 영향을 받는다. 하지만 침입탐지에 사용 가능한 여러개의 특징들 중 정확성과 효율성 측면에서 최적의 특징 조합을 추출하는 특징 선택 문제는 많은 계산량을 요구한다. 본 논문에서는 NSL-KDD 데이터 집합에서 제공하는 6가지 서비스 거부 공격과 정상 트래픽을 구분해 내기 위한 최적 특징 조합 선택 문제를 다룬다. 최적 특징 조합 선택 문제를 해결하기 위해 대표적인 메타 휴리스틱 알고리즘 중 하나인 다중 시작 지역탐색 알고리즘에 기반한 최적 특징 선택 알고리즘을 제시한다. 제안한 특징 선택 알고리즘의 성능 평가를 위해 NSL-KDD 데이터를 상대로 41개의 특징 모두를 사용한 경우와 비교한다. 그리고 선택된 특징 조합을 사용했을 때 가장 높은 성능을 보여주는 기계학습 방법을 찾기위해 3가지 잘 알려진 기계학습 방법들 (베이즈 분류기와 인공신경망, 서포트 벡터 머신)을 사용해 성능을 비교한다.

TripleDiff: 트리플 저장소에서 RDF 문서에 대한 점진적 갱신 알고리즘 (TripleDiff: an Incremental Update Algorithm on RDF Documents in Triple Stores)

  • 이태휘;김기성;유상원;김형주
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권5호
    • /
    • pp.476-485
    • /
    • 2006
  • 시멘틱 웹(semantic web)과 함께 등장한 RDF는 웹 상의 메타데이타 및 데이타를 나타내는 표준으로 자리매김 하고 있다. 이에 따라 RDF에 대한 저장 및 질의 처리에 대한 연구가 많이 이루어졌으며, 대표적인 시스템으로 Sesame, Jena 등이 있다. 그러나 아직 갱신 방법에 대한 연구는 부족하다. RDF 데이타가 지속적으로 갱신이 이루어지는 경우에는 저장된 RDF를 갱신해야 하는 상황이 발생한다. 현존하는 RDF 저장소에서 데이타를 갱신하기 위해서는 기존의 데이타를 모두 삭제한 후 새로운 데이타를 처음부터 다시 저장해야 하는데, 이러한 상황에서는 매우 비효율적이다. 또한 한 RDF 저장소에 여러 RDF가 저장되어 있는 경우에는 갱신 문제가 더욱 복잡해진다. 이에 본 논문에서는 RDF 데이타를 점진적으로 갱신하는 기법을 제안하고자 한다. 제안한 기법은 텍스트 비교 알고리즘을 통해 얻은 결과를 보완하여 기존 RDF 데이타에서 변화된 트리플 문장만을 추출하여 갱신한다. 실제 RDF 데이터를 이용한 실험을 통해 제안한 방법을 사용하여 갱신을 효율적으로 할 수 있음을 보였다.

한글 요구사항 기반 결정 테이블로부터 테스트 케이스 생성을 위한 메타모델링 구축화 (Metamodeling Construction for Generating Test Case via Decision Table Based on Korean Requirement Specifications)

  • 장우성;문소영;김영철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.381-386
    • /
    • 2023
  • 기존의 다양한 테스트 케이스 생성에 대한 연구는 모델로부터 테스트 케이스를 추출한다. 하지만 실무의 경우 자연어 요구사항 문장으로부터 테스트 케이스를 생성할 수 있어야 한다. 이를 위해 자연어 문장의 분석하고, 분석 과정 및 결과를 요구공학 영역에 접목하는 연구는 매우 필요하다. 하지만 한국어 문장의 다양성 때문에, 한국어 자연어 요구사항 분석은 어려운 이슈이다. 우리는 한국어 자연어 요구사항으로부터 테스트 케이스 생성 연구 중 하나로써, 자연어 요구사항의 정의 분석, C3Tree 모델의 생성, 원인-결과 그래프의 생성, 결정 테이블의 생성 단계를 통한 테스트 케이스 생성 방법을 연구한다. 본 논문은 중단 단계로써, 메타모델링 변환 기법을 이용하여 C3Tree 모델 기반의 결정 테이블로부터 테스트 케이스 생성 방법을 제안한다. 이 방법은 모델 변환 규칙의 수정을 통해 모델 to 모델, 모델 to 텍스트로의 변환 과정을 제어한다. 모델이 변형되거나, 새로운 모델이 추가되더라도 프로그램 알고리즘의 직접적인 수정 없이 모델 변환 규칙을 유지보수 할 수 있다. 평가 결과, 결정 테이블에 대한 모든 조합이 테스트 케이스로 자동 생성되었다.