• Title/Summary/Keyword: 메모리 한계

Search Result 282, Processing Time 0.024 seconds

A PCA-based Data Stream Reduction Scheme for Sensor Networks (센서 네트워크를 위한 PCA 기반의 데이터 스트림 감소 기법)

  • Fedoseev, Alexander;Choi, Young-Hwan;Hwang, Een-Jun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.35-44
    • /
    • 2009
  • The emerging notion of data stream has brought many new challenges to the research communities as a consequence of its conceptual difference with conventional concepts of just data. One typical example is data stream processing in sensor networks. The range of data processing considerations in a sensor network is very wide, from physical resource restrictions such as bandwidth, energy, and memory to the peculiarities of query processing including continuous and specific types of queries. In this paper, as one of the physical constraints in data stream processing, we consider the problem of limited memory and propose a new scheme for data stream reduction based on the Principal Component Analysis (PCA) technique. PCA can transform a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables. We adapt PCA for the data stream of a sensor network assuming the cooperation of a query engine (or application) with a network base station. Our method exploits the spatio-temporal correlation among multiple measurements from different sensors. Finally, we present a new framework for data processing and describe a number of experiments under this framework. We compare our scheme with the wavelet transform and observe the effect of time stamps on the compression ratio. We report on some of the results.

  • PDF

Analyses of the Effect of System Environment on Filebench Benchmark (시스템 환경이 Filebench 벤치마크에 미치는 영향 분석)

  • Song, Yongju;Kim, Junghoon;Kang, Dong Hyun;Lee, Minho;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.411-418
    • /
    • 2016
  • In recent times, NAND flash memory has become widely used as secondary storage for computing devices. Accordingly, to take advantage of NAND flash memory, new file systems have been actively studied and proposed. The performance of these file systems is generally measured with benchmark tools. However, since benchmark tools are executed by software simulation methods, many researchers get non-uniform benchmark results depending on the system environments. In this paper, we use Filebench, one of the most popular and representative benchmark tools, to analyze benchmark results and study the reasons why the benchmark result variations occur. Our experimental results show the differences in benchmark results depending on the system environments. In addition, this study substantiates the fact that system performance is affected mainly by background I/O requests and fsync operations.

A design on Light-Weight Key Exchange and Mutual Authentication Routing Protocol in Sensor Network Environments (센서네트워크 환경에서 경량화된 키 교환 및 상호인증 라우팅 프로토콜)

  • Lee, Kwang-Hyoung;Lee, Jae-Seung;Min, So-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7541-7548
    • /
    • 2015
  • Wireless Sensor Networks is the technology which is used in explore role for military purposes, as well as various fields such as industrial equipment management, process management, and leverage available technologies by distributing node into various areas. but there are some limitations about energy, processing power, and memory storage capacity in wireless sensor networks environment, because of tiny hardware, so various routing protocols are proposed to overcome it. however existing routing protocols are very vulnerable in the intercommunication, because they focus on energy efficiency, and they can't use existing encryption for it, Because of sensor's limitations such like processing power and memory. Therefore, this paper propose mutual authentication scheme that prevent various security threats by using mutual authentication techniques and, Key generation and updating system as taking into account energy efficiency.

Meltdown Threat Dynamic Detection Mechanism using Decision-Tree based Machine Learning Method (의사결정트리 기반 머신러닝 기법을 적용한 멜트다운 취약점 동적 탐지 메커니즘)

  • Lee, Jae-Kyu;Lee, Hyung-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.209-215
    • /
    • 2018
  • In this paper, we propose a method to detect and block Meltdown malicious code which is increasing rapidly using dynamic sandbox tool. Although some patches are available for the vulnerability of Meltdown attack, patches are not applied intentionally due to the performance degradation of the system. Therefore, we propose a method to overcome the limitation of existing signature detection method by using machine learning method for infrastructures without active patches. First, to understand the principle of meltdown, we analyze operating system driving methods such as virtual memory, memory privilege check, pipelining and guessing execution, and CPU cache. And then, we extracted data by using Linux strace tool for detecting Meltdown malware. Finally, we implemented a decision tree based dynamic detection mechanism to identify the meltdown malicious code efficiently.

Quad Tree Based 2D Smoke Super-resolution with CNN (CNN을 이용한 Quad Tree 기반 2D Smoke Super-resolution)

  • Hong, Byeongsun;Park, Jihyeok;Choi, Myungjin;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • Physically-based fluid simulation takes a lot of time for high resolution. To solve this problem, there are studies that make up the limitation of low resolution fluid simulation by using deep running. Among them, Super-resolution, which converts low-resolution simulation data to high resolution is under way. However, traditional techniques require to the entire space where there are no density data, so there are problems that are inefficient in terms of the full simulation speed and that cannot be computed with the lack of GPU memory as input resolution increases. In this paper, we propose a new method that divides and classifies 2D smoke simulation data into the space using the quad tree, one of the spatial partitioning methods, and performs Super-resolution only required space. This technique accelerates the simulation speed by computing only necessary space. It also processes the divided input data, which can solve GPU memory problems.

End-to-End Resource Management Techniques for Supporting Real-time Tasks in Mobile Devices (모바일 기기의 실시간 작업 지원을 위한 종단간 자원 관리 기술)

  • Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.43-48
    • /
    • 2022
  • With the recent performance improvement of mobile devices as well as the emergence of various applications, not only interactive tasks but also real-time tasks are rapidly increasing. As real-time tasks have deadline requirements, resource management policies used in the conventional time-sharing systems have limitations in satisfying real-time constraints. In this paper, we examine how to efficiently manage resources while satisfying the constraints of real-time tasks through end-to-end resource management of CPU, memory, and storage when interactive and real-time tasks are executed concurrently on a mobile device. Instead of suggesting complicated resource management policies, we focus on examining the basic concepts necessary for each resource management. Specifically, we first look at basic policies such as assigning dedicated CPU cores for real-time tasks, allocating a certain working set of real-time tasks in memory, and using fast storage without context switch in I/O. We then consider how these basic policies can be adopted efficiently.

A Study on the Evaluation of LLM's Gameplay Capabilities in Interactive Text-Based Games (대화형 텍스트 기반 게임에서 LLM의 게임플레이 기능 평가에 관한 연구)

  • Dongcheul Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.87-94
    • /
    • 2024
  • We investigated the feasibility of utilizing Large Language Models (LLMs) to perform text-based games without training on game data in advance. We adopted ChatGPT-3.5 and its state-of-the-art, ChatGPT-4, as the systems that implemented LLM. In addition, we added the persistent memory feature proposed in this paper to ChatGPT-4 to create three game player agents. We used Zork, one of the most famous text-based games, to see if the agents could navigate through complex locations, gather information, and solve puzzles. The results showed that the agent with persistent memory had the widest range of exploration and the best score among the three agents. However, all three agents were limited in solving puzzles, indicating that LLM is vulnerable to problems that require multi-level reasoning. Nevertheless, the proposed agent was still able to visit 37.3% of the total locations and collect all the items in the locations it visited, demonstrating the potential of LLM.

Cyclostorm : The Cloud Computing Service for Uplifting Javascript Processing Efficiency of Mobile Applications based on WAC (Cyclostorm : WAC 기반 모바일 앱의 자바스크립트 처리 효율 향상을 위한 클라우드 컴퓨팅 서비스)

  • Bang, Jiwoong;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.150-164
    • /
    • 2013
  • Currently it is being gradually focused on the mobile application's processing performance implemented by Javascript and HTML (Hyper Text Markup Language) due to the dissemination of mobile web application supply based on the WAC (Wholesale Application Community). If the application software has a simple functional processing structure, then the problem is benign, however, the load of a browser is getting heavier as the amount of Javascript processing is being increased. There is a limitation on the processing time and capacity of the Javascript in the ordinary mobile browsers which are on the market now. In order to solve those problems, the Web Worker that is not supported from the existing Javascript technology is now provided by the HTML 5 to implement the multi thread. The Web Worker provides a mechanism that process a part from the single thread through a separate one. However, it can not guarantee the computing ability as a native application on the mobile and is not enough as a solution for improving the fundamental processing speed. The Cyclostorm overcomes the limitation of resources as a mobile client and guarantees the performance as a native application by providing high computing service and ascripting the Javascript process on the mobile to the computer server on the cloud. From the performance evaluation experiment, the Cyclostorm shows a maximally 6 times faster computing speed than in the existing mobile browser's Javascript and 3 to 6 times faster than in Web Worker of the HTML 5. In addition, the usage of memory is measured less than the existing method since the server's memory has been used. In this paper, the Cyclostorm is introduced as one of the mobile cloud computing services to conquer the limitation of the WAC based mobile browsers and to improve the existing web application's performances.

Determination of Structural Member Section based on Nonlinear Behaviors of Steel Cable-Stayed Bridges and Harmony Search Algorithm (강사장교 비선형거동과 하모니 서치 알고리즘에 기반한 사장교 구성 단면 결정)

  • Sang-Soo Ma;Tae-Yun Kwon;Won-Hong Lee;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, a determination method of structural member section based on Nonlinear behaviors of steel cable-stayed bridges and the Harmony Search algorithm was presented. The Harmony Search algorithm determines the structural member section of cable-stayed bridges by repeating the process of setting the initial value, initializing the harmony memory, configuring the new harmony memory, and updating the harmony memory to search for the optimal value. The nonlinear initial shape analysis of a three-dimensional steel cable-stayed bridge was performed with the cross-section of the main member selected by the Harmony Search algorithm, and the optimal cross-section of the main members of the cable-stayed bridge, such as pylons, girders, cross-beams, and cables, reflecting the complex behavior characteristics and the nonlinearity of each member was determined in consideration of the initial tension and shape. The total weight was used as the objective function for determining the cross-section of the main member of the cable-stayed bridges, and the load resistance ability and serviceability based on the ultimate state design method were used as the restraint conditions. The width and height ratio of the girder and cross-section were considered additional restraint conditions. The optimal sections of the main members were made possible to be determined by considering the geometry and material nonlinearity of the pylons, girders, and cross-sections and the nonlinearity of the cable members. As a result of determining the optimal cross-section, it was confirmed that the proposed analysis method can determine the optimal cross-section according to the various constraint conditions of the cable-stayed bridge, and the structural member section of the cable-stayed bridge considering the nonlinearity can be determined through the Harmony Search algorithm.

High-quality Texture Extraction for Point Clouds Reconstructed from RGB-D Images (RGB-D 영상으로 복원한 점 집합을 위한 고화질 텍스쳐 추출)

  • Seo, Woong;Park, Sang Uk;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.61-71
    • /
    • 2018
  • When triangular meshes are generated from the point clouds in global space reconstructed through camera pose estimation against captured RGB-D streams, the quality of the resulting meshes improves as more triangles are hired. However, for 3D reconstructed models beyond some size threshold, they become to suffer from the ugly-looking artefacts due to the insufficient precision of RGB-D sensors as well as significant burdens in memory requirement and rendering cost. In this paper, for the generation of 3D models appropriate for real-time applications, we propose an effective technique that extracts high-quality textures for moderate-sized meshes from the captured colors associated with the reconstructed point sets. In particular, we show that via a simple method based on the mapping between the 3D global space resulting from the camera pose estimation and the 2D texture space, textures can be generated effectively for the 3D models reconstructed from captured RGB-D image streams.