• Title/Summary/Keyword: 먼지 센서

Search Result 145, Processing Time 0.024 seconds

Big Data-based Monitoring System Design for Water Quality Analysis that Affects Human Life Quality (인간의 삶의 질에 영향을 끼치는 수질(물) 분석을 위한 빅데이터 기반 모니터링 시스템 설계)

  • Park, Sung-Hoon;Seo, Yong-Cheol;Kim, Yong-Hwan;Pang, Seung-Peom
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.289-295
    • /
    • 2021
  • Today, the most important factor affecting the quality of human life is thought to be due to the environment. The importance of environmental monitoring systems to improve human life and improve welfare as the magnitude of the damage increases year by year due to the rapid increase in the frequency of hail, typhoons, collapse of incisions, landslides, etc. Is increasing day by day. Among environmental problems, problems caused by water quality have a very high proportion, and as there is a growing concern that the scale of damage will increase when water pollution accidents occur due to urbanization and industrialization, the demand for social water safety nets is increasing. have. In the last 5 years, 259 cases of water pollution (Han River 99, Nakdong River 31, Geum River 25, Seomjin River and Yeongsan River 19, and 85 others) have occurred in the four major river basins. Caused damage. Therefore, it is required to establish a water quality environment management strategy system based on big data that can minimize the uncertainty of the water quality environment by expanding the target of water quality management from the current water quality management system centered on the four major rivers to small and medium-sized rivers, tributaries/branches, and reservoirs. In this paper, we intend to construct and analyze a water quality monitoring system based on big data that can present useful water quality environment information by analyzing the water quality information accumulated for a long time.

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.

CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan (수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로)

  • Han, Sangcheol;Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.851-861
    • /
    • 2022
  • In this study, we analyzed the effects of trees planted in urban areas on PM2.5 reduction using a computational fluid dynamics (CFD) model. For realistic numerical simulations, the meteorological components(e.g., wind velocity components and air temperatures) predicted by the local data assimilation and prediction system (LDAPS), an operational model of the Korea Meteorological Administration, were used as the initial and boundary conditions of the CFD model. The CFD model was validated against, the PM2.5 concentrations measured by the sensor networks. To investigate the effects of trees on the PM2.5 reduction, we conducted the numerical simulations for three configurations of the buildings and trees: i) no tree (NT), ii) trees with only drag effect (TD), and iii) trees with the drag and dry-deposition effects (DD). The results showed that the trees in the target area significantly reduced the PM2.5 concentrations via the dry-deposition process. The PM2.5 concentration averaged over the domain in DD was reduced by 5.7 ㎍ m-3 compared to that in TD.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

A Strategy for Environmental Improvement and Internationalization of the IEODO Ocean Research Station's Radiation Observatory (이어도 종합해양과학기지의 복사관측소 환경 개선 및 국제화 추진 전략)

  • LEE, SANG-HO;Zo, Il-SUNG;LEE, KYU-TAE;KIM, BU-YO;JUNG, HYUN-SEOK;RIM, SE-HUN;BYUN, DO-SEONG;LEE, JU-YEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.118-134
    • /
    • 2017
  • The radiation observation data will be used importantly in research field such as climatology, weather, architecture, agro-livestock and marine science. The Ieodo Ocean Research Station (IORS) is regarded as an ideal observatory because its location can minimize the solar radiation reflection from the surrounding background and also the data produced here can serve as a reference data for radiation observation. This station has the potential to emerge as a significant observatory and join a global radiation observation group such as the Baseline Surface Radiation Network (BSRN), if the surrounding of observatory is improved and be equipped with the essential radiation measuring instruments (pyaranometer and pyrheliometer). IORS has observed the solar radiation using a pyranometer since November 2004 and the data from January 1, 2005 to December 31, 2015 were analyzed in this study. During the period of this study, the daily mean solar radiation observed from IORS decreased to $-3.80W/m^2/year$ due to the variation of the sensor response in addition to the natural environment. Since the yellow sand and fine dust from China are of great interest to scientists around the world, it is necessary to establish a basis of global joint response through the radiation data obtained at the Ieodo as well as at Sinan Gageocho and Ongjin Socheongcho Ocean Research Station. So it is an urgent need to improve the observatory surrounding and the accuracy of the observed data.