• 제목/요약/키워드: 머신 데이터

검색결과 1,217건 처리시간 0.032초

서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식 (The study on the object recognition using Fuzzy Classification system based on Support Vector)

  • 김성진;원상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

머신러닝 기반의 하수처리장 예측 모델 평가 및 개발 (Development and Evaluation of Machine Learning-based Prediction Models for Wastewater Treatment Plant)

  • 심규대;김효상;장근수;김동균;김영모
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.499-499
    • /
    • 2023
  • 최근 컴퓨터 성능 향상과 새로운 머신러닝 알고리즘 개발됨에 따라, 각 분야별 연구자들이 이를 활용한 연구를 다양하게 수행하고 있으며, 하수처리시설의 경우에는 막대한 양의 운영자료가 축척됨에 따라 머신러닝을 활용한 다양한 연구가 가속화 되고 있다. 기존 하수처리장의 물리학적 모델은 적용된 영향 인자에 여러 가지 가정이 고려되어 모델 정확도가 부정확해지는 경향이 있었으며, 이러한 문제점을 보완하기 위해 하수처리장의 수집된 운영자료 및 머신러닝 기반의 예측 모델을 활용하여 예측 모델 정확도를 향상하는 선행 연구들이 진행되고 있다. A 하수처리장의 부지 내에 설치된 센서를 통하여 운영자료가 중앙제어실 서버에 실시간으로 저장되는 자료를 활용하여 NN (Neural Network), SVM (Support Vector Machine), RF (Random Forest) 등과 같은 다양한 머신러닝 모델을 적용하였고, 하수처리장 운영자료를 적용할 경우 어느 모델이 가장 높은 성능이 나타나는지 인사이트를 도출하고자 하였다. 금회 연구는 A 하수처리장을 대상으로 여러 머신러닝 기반 예측 모델을 개발하고, 각 모델의 예측정확도를 서로 평가함으로써, 머신러닝 모델 최적화를 수행할 수 있었다. 이번 연구에서 도출된 결과를 활용하여 하수처리장 예측 모델 최적화를 진행할 경우, 향후 비교적 짧은 시간에 하수처리장 머신러닝 기반 예측 모델 개발이 가능하다는 점에 의의가 있다.

  • PDF

데이터 정제를 통한 딥러닝 기반의 유저 맞춤형 음식추천시스템 (User-specific Food Recommended System Using Data Cleaning)

  • 김균엽;강상우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.578-581
    • /
    • 2020
  • 제품을 추천하는 기능은 사용자의 콘텐츠 또는 제품 소비량에 직결되기에 다양한 인터넷 플랫폼에서 많은 관심을 받고 있다. 이러한 제품 추천 시스템의 성능은 다양한 머신러닝 알고리즘과 딥러닝의 발전에 의해 성능을 비약적으로 개선되어왔다. 하지만 여느 딥러닝과 머신러닝 알고리즘과 마찬가지로 추천 시스템들의 성능은 빅데이터의 품질에 따라 매우 민감한 영향을 받는다. 본 논문에서는 모바일 배달 플랫폼에서 사용자들의 리뷰 데이터들을 통해 딥러닝과 빅데이터를 사용하여 음식을 추천하는 방법을 제안한다. 또한 사용자들의 리뷰 데이터들을 정제하여 데이터의 품질을 높이는 과정을 추가하여 그 결과가 성능에 얼마만큼 영향을 미치는 지를 실험을 통하여 분석한다.

  • PDF

초급 데이터 엔지니어를 위한 오픈 소스 기반 데이터 플랫폼 구축 제안 (Proposal for building an open source-based data platform for entry-level data engineers)

  • 곽두일;박광영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.592-594
    • /
    • 2023
  • 빅데이터 및 머신러닝 플랫폼을 구축하기 위해선 많은 하드웨어와 소프트웨어, 데이터 엔지니어가 필수인데, 초급 엔지니어들은 경험 부족으로 인해 기업의 수요를 충족시키지 못하고 있다. 본 논문에서는 초급 데이터 엔지니어가 쉽게 접근 가능한 오픈소스를 활용한 빅데이터 플랫폼과 머신러닝 플랫폼을 통합한 7개층으로 이루어진 '데이터 플랫폼'을 제안한다. 향후 제안하는 플랫폼의 현실적인 검증을 위해 계층간 연계가 얼마나 용이한지에 대해 후속연구가 필요하다.

지능형 사물인터넷 기술 교육을 위한 머신러닝 모델 활용 사례 개발 (Development of Machine Learning Model Use Cases for Intelligent Internet of Things Technology Education)

  • 허경
    • 실천공학교육논문지
    • /
    • 제16권4호
    • /
    • pp.449-457
    • /
    • 2024
  • 지능형 사물인터넷인 AIoT는 IoT 디바이스가 측정한 데이터를 수집하고 머신러닝 기술을 적용해 예측 모델을 만들어 활용하는 기술을 의미한다. AIoT 기술 교육을 위한 기존 연구에서는 교육용 AIoT 플랫폼 구축하고 사용법을 교육하는 데 초점을 맞추었다. 그러나, IoT 디바이스가 측정한 데이터로부터 머신러닝 모델이 자동 생성되고 활용되는 과정을 교육하는 사례 연구는 부족하였다. 본 논문에서는 AIoT 기술 교육을 위한 머신러닝 모델 활용 사례를 개발하였다. 본 논문에서 개발한 사례는 AIoT 디바이스의 데이터 수집, 데이터 전처리, 머신러닝 모델 자동 생성, 모델별 정확도 산출 및 유효 모델 결정, 유효 모델을 활용한 데이터 예측 단계들로 구성되었다. 본 논문에서는 AIoT 디바이스의 센서들이 서로 다른 범위의 값들을 측정하는 것을 고려하였고, 이에 따른 데이터 전처리 사례를 제시하였다. 또한 여러 머신러닝 모델들을 자동 생성하고 이 모델들 중 정확도가 높은 유효모델을 결정하여, AIoT 디바이스가 어떤 정보를 예측할 수 있는 가를 스스로 결정하는 사례를 개발하였다. 개발한 사례를 적용하면, AIoT를 활용한 예측기반 사물 제어와 같은 AIoT 활용 교육 콘텐츠를 다양하게 개발할 수 있다.

캐글 플랫폼 활용한 태양광 데이터셋 형태 구축: 머신 러닝의 적용 가능성 (On Building the Solar Dataset Form using the Kaggle Platform: The applicability of Machine Learning)

  • 고주원;박정진;박진우;오도희;김민철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.255-258
    • /
    • 2022
  • 최근 환경 오염이 지속되면서 신재생 에너지에 대한 사람들의 관심이 높아지고 있다. 제주 지역은 태양광, 태양열, 바이오, 풍력 발전 등 신재생 에너지 발전이 많이 이루어지고 있지만, 그에 비하여 관련 데이터의 개방과 분석 사례는 부족한 상황이다. 이에 본 연구에서는 전 세계 데이터 사이언티스트(Data Scientists)들이 활동하고 있는 캐글(Kaggle) 플랫폼을 활용하여 태양광 생산량과 관련된 변수를 추출하고, 데이터에 적용할 수 있는 머신러닝(Machine Learning) 기법을 탐구하여 머신 러닝 설계를 위한 제주 지역의 태양광 발전 데이터셋(Dataset) 형태(Form)를 제시하고자 한다. 구체적으로는 캐글 데이터 플랫폼을 활용하여 태양광 에너지 분석을 진행한 후 제주 지역 태양광 데이터 수집에 대한 보완점을 제안할 수 있다. 이러한 시도는 제주 지역의 태양광 산업의 발전을 위한 데이터 분석에 활용이 가능할 것으로 기대할 수 있다. 즉, 현재 개방되어 있는 제주 지역의 태양광 발전 데이터셋 형태를 인공지능(Artificial Intelligent) 분석을 위한 머신러닝에 적합한 형태로 구축이 될 수 있도록 제안할 수 있다. 이를 통하여 제주 지역 태양광 산업의 발전의 효율을 높이는 방안을 마련하는데 기반 연구가 될 것이다.

  • PDF

Win-Loss Prediction Using AOS Game User Data

  • Ye-Ji Kim;Jung-Hye Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.23-32
    • /
    • 2023
  • 현대 사회의 새로운 스포츠로 정의되는 e-스포츠는 세계적으로 많은 사랑을 받는 스포츠로 자리매김했다. 그 중, E-sports를 대표하는 AOS(Aeon of Strife) 장르의 게임은 플레이어 개개인과 팀의 운영이 승패를 좌우하는 요소가 된다는 특징을 가진다. 본 논문은 실제 유저들의 게임 데이터를 수집하고 데이터를 통계적 기법으로 분석하여 정보를 제공한다. 또한, 수집한 데이터를 활용해 머신러닝 기법을 이용하여 승패 예측 모형을 설계하고 실험한다. 5개의 머신러닝 알고리즘이 사용되었고, 평균적으로 개인 데이터 모형에서는 Accuracy 80%, 팀 데이터 모형에서는 Accuracy 95%의 성능을 보인다. 본 연구에서 모형 설계 시 사용된 데이터는 개인 데이터 1,149,950건, 팀 데이터 230,234건으로 규모가 크고 일반 유저들의 플레이 성격을 잘 반영하고 있기 때문에 개발사의 게임 운영이나 일반 유저의 전략 수립 등에 도움이 될 것으로 기대한다. 실험 결과, 개인 데이터 모형과 팀 데이터 모형을 비교하였을 때, 팀 단위 모형의 성능이 상대적으로 매우 좋게 나타났다.

스마트 팩토리 반도체 공정 데이터 최적화를 위한 향상된 머신러닝 전처리 방법 연구 (Enhanced Machine Learning Preprocessing Techniques for Optimization of Semiconductor Process Data in Smart Factories)

  • 최승규;이승재;남춘성
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.57-64
    • /
    • 2024
  • 스마트 팩토리의 도입은 제조업 분야에서 객관적이고 효율적인 라인 관리로의 전환을 가져왔다. 그러나 대부분의 회사가 매초 수집되는 수많은 센서 데이터를 효과적으로 사용하지 못하고 있다. 본 연구에서는 이러한 데이터를 활용해 제품 품질을 예측하고 효율적인 생산 공정의 관리를 목표로 한다. 보안 문제로 구체적인 센서 데이터 확인이 불가하여, "SAMSUNG SDS Brightics AI" 사이트의 반도체 공정 관련 학습용 데이터를 확보하여 연구를 진행한다. 머신러닝 모델에서 데이터의 전처리 과정은 성능을 결정짓는 중요한 요소이다. 따라서, 결측값 제거, 이상치 제거, 스케일링, 특성 제거의 전처리 과정을 통해 최적의 센서 데이터를 확보하였다. 또한, 학습 데이터셋이 불균형 데이터를 이루고 있어 오버샘플링 기법을 통해 동일한 비율을 맞추어 모델 평가 전 데이터를 준비하였다. 머신러닝에서 제공되는 다양한 모델 평가로 구한 SVM(rbf) 모델로 높은 성능(Accuracy : 97.07%, GM : 96.61%)을 확인했다. 또한, 동일한 데이터로 학습 시 "SAMSUNG SDS Brightics AI"에서 구현하였던 MLP 모델보다 더 높은 성능을 보인다. 본 연구는 센서 데이터를 활용한 양품/불량품 예측 외에도 부품 주기, 공정 조건 예측 등 다양한 주제에 적용 가능하다.

소리 데이터를 기반으로 일상생활 문제를 해결하는 초등 머신러닝 교육 프로그램 개발 (Development of Elementary Machine Learning Education Program to Solve Daily Life Problems Using Sound Data)

  • 문우종;고승환;이준호;김종훈
    • 정보교육학회논문지
    • /
    • 제25권5호
    • /
    • pp.705-712
    • /
    • 2021
  • 본 연구는 인공지능이라는 시대적 흐름에 따라 초등학교에서 쉽게 적용할 수 있는 인공지능 교육 프로그램을 개발하는 데 목적을 두고 있다. 교육 프로그램은 ADDIE 모형의 단계에 따라 초등교사 70명 대상의 요구 분석결과를 바탕으로 목적과 방향을 설계하였다. 설문 결과 초등학생들이 인공지능을 처음 배울 때 생활 속에서 가장 접하기 쉬운 소리 데이터를 주제로 설정하고, 일상생활에서 소리 데이터를 활용하여 문제를 해결하는 과정에서 인공지능의 원리를 익히고, 그 과정에서 컴퓨팅 사고력도 키울 수 있도록 머신러닝 교육 프로그램을 개발하였다. 인공지능 교육의 필요성이 대두되는 요즘 본 연구에서 개발한 소리 데이터를 기반으로 일상생활 문제를 해결하는 초등 머신러닝 교육 프로그램을 통해 초등 인공지능 교육의 기반을 갖출 수 있을 것이다.

싸이킷런과 사이버위협 데이터셋을 이용한 사이버 공격 그룹의 분류 (Clasification of Cyber Attack Group using Scikit Learn and Cyber Treat Datasets)

  • 김경신;이호준;김성희;김병익;나원식;김동욱;이정환
    • 융합정보논문지
    • /
    • 제8권6호
    • /
    • pp.165-171
    • /
    • 2018
  • 최근 IT보안의 화두가 되고 있는 가장 위협적인 공격은 APT공격이다. APT공격에 대한 대응은 인공지능기법을 활용한 대응이외에는 방법이 없다는 것이 현재까지의 결론이다. 여기서는 머신러닝 기법을 활용한 사이버위협 데이터를 분석하는 방법, 그 중에서도 빅데이터 머신러닝 프레임웍인 Scikit Learn를 활용하여 사이버공격 사례를 수집한 데이터셋을 이용하여 사이버공격을 분석하는 머신러닝 알고리즘을 구현하였다. 이 결과 70%에 육박하는 공격 분류 정확도를 보였다. 이 결과는 향후 보안관제 시스템의 알고리즘으로 발전가능하다.