본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.
최근 컴퓨터 성능 향상과 새로운 머신러닝 알고리즘 개발됨에 따라, 각 분야별 연구자들이 이를 활용한 연구를 다양하게 수행하고 있으며, 하수처리시설의 경우에는 막대한 양의 운영자료가 축척됨에 따라 머신러닝을 활용한 다양한 연구가 가속화 되고 있다. 기존 하수처리장의 물리학적 모델은 적용된 영향 인자에 여러 가지 가정이 고려되어 모델 정확도가 부정확해지는 경향이 있었으며, 이러한 문제점을 보완하기 위해 하수처리장의 수집된 운영자료 및 머신러닝 기반의 예측 모델을 활용하여 예측 모델 정확도를 향상하는 선행 연구들이 진행되고 있다. A 하수처리장의 부지 내에 설치된 센서를 통하여 운영자료가 중앙제어실 서버에 실시간으로 저장되는 자료를 활용하여 NN (Neural Network), SVM (Support Vector Machine), RF (Random Forest) 등과 같은 다양한 머신러닝 모델을 적용하였고, 하수처리장 운영자료를 적용할 경우 어느 모델이 가장 높은 성능이 나타나는지 인사이트를 도출하고자 하였다. 금회 연구는 A 하수처리장을 대상으로 여러 머신러닝 기반 예측 모델을 개발하고, 각 모델의 예측정확도를 서로 평가함으로써, 머신러닝 모델 최적화를 수행할 수 있었다. 이번 연구에서 도출된 결과를 활용하여 하수처리장 예측 모델 최적화를 진행할 경우, 향후 비교적 짧은 시간에 하수처리장 머신러닝 기반 예측 모델 개발이 가능하다는 점에 의의가 있다.
제품을 추천하는 기능은 사용자의 콘텐츠 또는 제품 소비량에 직결되기에 다양한 인터넷 플랫폼에서 많은 관심을 받고 있다. 이러한 제품 추천 시스템의 성능은 다양한 머신러닝 알고리즘과 딥러닝의 발전에 의해 성능을 비약적으로 개선되어왔다. 하지만 여느 딥러닝과 머신러닝 알고리즘과 마찬가지로 추천 시스템들의 성능은 빅데이터의 품질에 따라 매우 민감한 영향을 받는다. 본 논문에서는 모바일 배달 플랫폼에서 사용자들의 리뷰 데이터들을 통해 딥러닝과 빅데이터를 사용하여 음식을 추천하는 방법을 제안한다. 또한 사용자들의 리뷰 데이터들을 정제하여 데이터의 품질을 높이는 과정을 추가하여 그 결과가 성능에 얼마만큼 영향을 미치는 지를 실험을 통하여 분석한다.
빅데이터 및 머신러닝 플랫폼을 구축하기 위해선 많은 하드웨어와 소프트웨어, 데이터 엔지니어가 필수인데, 초급 엔지니어들은 경험 부족으로 인해 기업의 수요를 충족시키지 못하고 있다. 본 논문에서는 초급 데이터 엔지니어가 쉽게 접근 가능한 오픈소스를 활용한 빅데이터 플랫폼과 머신러닝 플랫폼을 통합한 7개층으로 이루어진 '데이터 플랫폼'을 제안한다. 향후 제안하는 플랫폼의 현실적인 검증을 위해 계층간 연계가 얼마나 용이한지에 대해 후속연구가 필요하다.
지능형 사물인터넷인 AIoT는 IoT 디바이스가 측정한 데이터를 수집하고 머신러닝 기술을 적용해 예측 모델을 만들어 활용하는 기술을 의미한다. AIoT 기술 교육을 위한 기존 연구에서는 교육용 AIoT 플랫폼 구축하고 사용법을 교육하는 데 초점을 맞추었다. 그러나, IoT 디바이스가 측정한 데이터로부터 머신러닝 모델이 자동 생성되고 활용되는 과정을 교육하는 사례 연구는 부족하였다. 본 논문에서는 AIoT 기술 교육을 위한 머신러닝 모델 활용 사례를 개발하였다. 본 논문에서 개발한 사례는 AIoT 디바이스의 데이터 수집, 데이터 전처리, 머신러닝 모델 자동 생성, 모델별 정확도 산출 및 유효 모델 결정, 유효 모델을 활용한 데이터 예측 단계들로 구성되었다. 본 논문에서는 AIoT 디바이스의 센서들이 서로 다른 범위의 값들을 측정하는 것을 고려하였고, 이에 따른 데이터 전처리 사례를 제시하였다. 또한 여러 머신러닝 모델들을 자동 생성하고 이 모델들 중 정확도가 높은 유효모델을 결정하여, AIoT 디바이스가 어떤 정보를 예측할 수 있는 가를 스스로 결정하는 사례를 개발하였다. 개발한 사례를 적용하면, AIoT를 활용한 예측기반 사물 제어와 같은 AIoT 활용 교육 콘텐츠를 다양하게 개발할 수 있다.
최근 환경 오염이 지속되면서 신재생 에너지에 대한 사람들의 관심이 높아지고 있다. 제주 지역은 태양광, 태양열, 바이오, 풍력 발전 등 신재생 에너지 발전이 많이 이루어지고 있지만, 그에 비하여 관련 데이터의 개방과 분석 사례는 부족한 상황이다. 이에 본 연구에서는 전 세계 데이터 사이언티스트(Data Scientists)들이 활동하고 있는 캐글(Kaggle) 플랫폼을 활용하여 태양광 생산량과 관련된 변수를 추출하고, 데이터에 적용할 수 있는 머신러닝(Machine Learning) 기법을 탐구하여 머신 러닝 설계를 위한 제주 지역의 태양광 발전 데이터셋(Dataset) 형태(Form)를 제시하고자 한다. 구체적으로는 캐글 데이터 플랫폼을 활용하여 태양광 에너지 분석을 진행한 후 제주 지역 태양광 데이터 수집에 대한 보완점을 제안할 수 있다. 이러한 시도는 제주 지역의 태양광 산업의 발전을 위한 데이터 분석에 활용이 가능할 것으로 기대할 수 있다. 즉, 현재 개방되어 있는 제주 지역의 태양광 발전 데이터셋 형태를 인공지능(Artificial Intelligent) 분석을 위한 머신러닝에 적합한 형태로 구축이 될 수 있도록 제안할 수 있다. 이를 통하여 제주 지역 태양광 산업의 발전의 효율을 높이는 방안을 마련하는데 기반 연구가 될 것이다.
현대 사회의 새로운 스포츠로 정의되는 e-스포츠는 세계적으로 많은 사랑을 받는 스포츠로 자리매김했다. 그 중, E-sports를 대표하는 AOS(Aeon of Strife) 장르의 게임은 플레이어 개개인과 팀의 운영이 승패를 좌우하는 요소가 된다는 특징을 가진다. 본 논문은 실제 유저들의 게임 데이터를 수집하고 데이터를 통계적 기법으로 분석하여 정보를 제공한다. 또한, 수집한 데이터를 활용해 머신러닝 기법을 이용하여 승패 예측 모형을 설계하고 실험한다. 5개의 머신러닝 알고리즘이 사용되었고, 평균적으로 개인 데이터 모형에서는 Accuracy 80%, 팀 데이터 모형에서는 Accuracy 95%의 성능을 보인다. 본 연구에서 모형 설계 시 사용된 데이터는 개인 데이터 1,149,950건, 팀 데이터 230,234건으로 규모가 크고 일반 유저들의 플레이 성격을 잘 반영하고 있기 때문에 개발사의 게임 운영이나 일반 유저의 전략 수립 등에 도움이 될 것으로 기대한다. 실험 결과, 개인 데이터 모형과 팀 데이터 모형을 비교하였을 때, 팀 단위 모형의 성능이 상대적으로 매우 좋게 나타났다.
스마트 팩토리의 도입은 제조업 분야에서 객관적이고 효율적인 라인 관리로의 전환을 가져왔다. 그러나 대부분의 회사가 매초 수집되는 수많은 센서 데이터를 효과적으로 사용하지 못하고 있다. 본 연구에서는 이러한 데이터를 활용해 제품 품질을 예측하고 효율적인 생산 공정의 관리를 목표로 한다. 보안 문제로 구체적인 센서 데이터 확인이 불가하여, "SAMSUNG SDS Brightics AI" 사이트의 반도체 공정 관련 학습용 데이터를 확보하여 연구를 진행한다. 머신러닝 모델에서 데이터의 전처리 과정은 성능을 결정짓는 중요한 요소이다. 따라서, 결측값 제거, 이상치 제거, 스케일링, 특성 제거의 전처리 과정을 통해 최적의 센서 데이터를 확보하였다. 또한, 학습 데이터셋이 불균형 데이터를 이루고 있어 오버샘플링 기법을 통해 동일한 비율을 맞추어 모델 평가 전 데이터를 준비하였다. 머신러닝에서 제공되는 다양한 모델 평가로 구한 SVM(rbf) 모델로 높은 성능(Accuracy : 97.07%, GM : 96.61%)을 확인했다. 또한, 동일한 데이터로 학습 시 "SAMSUNG SDS Brightics AI"에서 구현하였던 MLP 모델보다 더 높은 성능을 보인다. 본 연구는 센서 데이터를 활용한 양품/불량품 예측 외에도 부품 주기, 공정 조건 예측 등 다양한 주제에 적용 가능하다.
본 연구는 인공지능이라는 시대적 흐름에 따라 초등학교에서 쉽게 적용할 수 있는 인공지능 교육 프로그램을 개발하는 데 목적을 두고 있다. 교육 프로그램은 ADDIE 모형의 단계에 따라 초등교사 70명 대상의 요구 분석결과를 바탕으로 목적과 방향을 설계하였다. 설문 결과 초등학생들이 인공지능을 처음 배울 때 생활 속에서 가장 접하기 쉬운 소리 데이터를 주제로 설정하고, 일상생활에서 소리 데이터를 활용하여 문제를 해결하는 과정에서 인공지능의 원리를 익히고, 그 과정에서 컴퓨팅 사고력도 키울 수 있도록 머신러닝 교육 프로그램을 개발하였다. 인공지능 교육의 필요성이 대두되는 요즘 본 연구에서 개발한 소리 데이터를 기반으로 일상생활 문제를 해결하는 초등 머신러닝 교육 프로그램을 통해 초등 인공지능 교육의 기반을 갖출 수 있을 것이다.
최근 IT보안의 화두가 되고 있는 가장 위협적인 공격은 APT공격이다. APT공격에 대한 대응은 인공지능기법을 활용한 대응이외에는 방법이 없다는 것이 현재까지의 결론이다. 여기서는 머신러닝 기법을 활용한 사이버위협 데이터를 분석하는 방법, 그 중에서도 빅데이터 머신러닝 프레임웍인 Scikit Learn를 활용하여 사이버공격 사례를 수집한 데이터셋을 이용하여 사이버공격을 분석하는 머신러닝 알고리즘을 구현하였다. 이 결과 70%에 육박하는 공격 분류 정확도를 보였다. 이 결과는 향후 보안관제 시스템의 알고리즘으로 발전가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.