인공신경망과 같은 기계학습에 기반한 네트워크 침입탐지/방지시스템은 특징 조합에 따라 탐지의 정확성과 효율성 측면에서 크게 영향을 받는다. 하지만 침입탐지에 사용 가능한 여러개의 특징들 중 정확성과 효율성 측면에서 최적의 특징 조합을 추출하는 특징 선택 문제는 많은 계산량을 요구한다. 본 논문에서는 NSL-KDD 데이터 집합에서 제공하는 6가지 서비스 거부 공격과 정상 트래픽을 구분해 내기 위한 최적 특징 조합 선택 문제를 다룬다. 최적 특징 조합 선택 문제를 해결하기 위해 대표적인 메타 휴리스틱 알고리즘 중 하나인 다중 시작 지역탐색 알고리즘에 기반한 최적 특징 선택 알고리즘을 제시한다. 제안한 특징 선택 알고리즘의 성능 평가를 위해 NSL-KDD 데이터를 상대로 41개의 특징 모두를 사용한 경우와 비교한다. 그리고 선택된 특징 조합을 사용했을 때 가장 높은 성능을 보여주는 기계학습 방법을 찾기위해 3가지 잘 알려진 기계학습 방법들 (베이즈 분류기와 인공신경망, 서포트 벡터 머신)을 사용해 성능을 비교한다.
스마트 폰의 보급률이 증가함에 따라 스마트 폰을 대상으로 하는 악성코드들이 증가하고 있다. 360 Security의 스마트 폰 악성코드 통계에 따르면 2015년 4분기에 비해 2016년 1분기에 악성코드가 437% 증가하는 수치를 보였다. 특히 이러한 스마트 폰 악성코드 유포의 주요 수단인 악성 어플리케이션들은 사용자 정보 유출, 데이터 파괴, 금전 갈취 등을 목적으로 하는데 운영 체제나 프로그래밍 언어가 제공하는 기능을 제어할 수 있게 해주는 인터페이스인 API에 의하여 동작하는 경우가 대부분이다. 본 논문에서는 정적 분석으로 도출한 어플리케이션 내 API의 패턴을 지도 학습 기법으로 머신에 학습하여 정상 어플리케이션과 악성 어플리케이션 내의 API 패턴의 유사도에 따라 악성 어플리케이션을 탐지하는 메커니즘을 제시하고 샘플 데이터에 대하여 해당 메커니즘을 사용하여 도출한 label 별 탐지율과 탐지율 개선을 위한 기법을 보인다. 특히, 제안된 메커니즘의 경우 신종 악성 어플리케이션의 API 패턴이 기존에 학습된 패턴과 일정 수준 유사한 경우 탐지가 가능하며 향후 어플리케이션의 다양한 feature를 연구하여 본 메커니즘에 적용한다면 anti-malware 체계의 신종 악성 어플리케이션 탐지에 사용될 수 있을 것이라 예상된다.
근래에 들어 풍부한 지식베이스를 구축하기 위한 대용량 RDFS 추론에 대한 관심이 높아지면서 기존의 단일 머신으로는 대용량 데이터의 추론 성능을 향상시키기에 한계가 있다. 그래서 분산 환경에서 의 RDFS 추론 엔진 개발이 활발히 연구되고 있다. 하지만 기존의 분산 환경 엔진은 실시간 처리가 불가능 하며 구현이 어렵고 반복 작업에 취약하다. 본 논문에서는 이러한 문제를 극복하기 위해 병렬 그래프 구조 를 사용한 인-메모리 분산 추론 엔진 구축 방법을 제안한다. 트리플 형태의 온톨로지는 기본적으로 그래프 구조를 가지고 있으므로 그래프 구조 기반의 추론 엔진을 설계하는 것이 직관적이다. 또한 그래프 구조를 활용하는 오퍼레이터를 활용하여 RDFS 추론 규칙을 구현함으로써 기존의 데이터 관점과 달리 그래프 구조의 관점에서 설계할 수 있다. 본 논문에서 제안한 추론 엔진을 평가하기 위해 LUBM1000(1억 3천 3백만 트리플, 17.9GB), LUBM3000(4억 1천 3백만 트리플, 54.3GB)에 대해 추론 속도를 실험을 하였으며 실 험결과, 비-인메모리 분산 추론 엔진보다 약 10배 정도 빠른 추론 성능을 보였다.
디지털 고성능 영상장비의 대중화와 강력한 이미지 편집 소프트웨어의 출현으로 인해 고품질의 위 변조가 가능하게 되었다. 특히 화폐 위 변조 범죄가 급격히 증가하고 있지만, 일반인이 위 변조 지폐를 발견하는 비율은 낮은 수준이다. 본 논문에서는 범용 스캐너를 이용하여 위 변조 지폐를 판별할 수 있는 알고리즘을 제안한다. 본 알고리즘에서는 위 변조 지폐를 출력하는 과정에서 나타나는 인쇄물의 고유한 특징에 기반하여 위 변조 여부를 판별한다. 비지역적 평균 알고리즘을 이용하여 인쇄 과정에서 나타나는 노이즈 특성을 추출하고, 명암도 동시발생 행렬을 계산하여 지폐의 특징값을 추출하였다. 추출한 지폐의 고유한 특징값을 학습기반 데이터 분류기에 적용하여 위 변조 여부를 판별하였다. 제안한 알고리즘의 성능을 분석하기 위해 총 324장의 1만원권 지폐와 8대 프린터에서 출력한 위조지폐 이미지로 실험하였다. 또한 노이즈 추출에 있어 기존 프린터 판별 기술에서 사용되었던 위너필터와 이산웨이블릿변환 기반 알고리즘과 비교 분석을 수행하였다. 그 결과 제안한 알고리즘이 위 변조 판별에 있어서 94% 이상의 정확도를 보였으며, 위 변조 지폐 인쇄기기 식별에 있어서는 93% 이상의 정확도를 보여서 기존 프린터 판별 기술을 이용한 것보다 우수함을 보였다.
모바일 기기는 그 자체가 가지고 있는 연산 자원이 제한적이기 때문에 클라우드를 활용하여 컴퓨팅하거나 데이터를 저장하는 경향이 있다. 5G로 인해 실시간성이 중요해 짐에 따라, 중앙 클라우드보다 사용자에게 더 가까운 위치에서 컴퓨팅하는 엣지 클라우드에 관한 많은 연구가 수행되었다. 사용자가 현재 연결된 기지국의 엣지 클라우드와 물리적인 거리가 멀어질수록 네트워크 전송 속도가 느려지게 된다. 따라서 원활한 서비스 이용을 위해서는 가까운 엣지 클라우드로 애플리케이션을 마이그레이션 한 뒤 재실행해야 한다. 우리는 호스트 운영 체제와 독립적이며, 가상 머신에 비해 이미지 크기가 상대적으로 가벼운 도커 컨테이너에서 애플리케이션을 실행한다. 기존의 마이그레이션 연구는 네트워크 시뮬레이터를 사용하여 실험하였다. 시뮬레이터는 고정된 값을 사용하기 때문에 실제 환경에서의 결괏값과는 차이점이 발생한다. 또한, 공유 저장소를 통해 이미지를 마이그레이션 하는 방식을 사용하였는데, 이는 패킷 내용 노출에 대한 위험을 갖는다. 본 논문에서는 실제 환경에서 엣지 컴퓨팅 환경을 구현하여 데이터 암호화 전송방식인 안전 복사(Secure CoPy) 방식으로 컨테이너를 마이그레이션 한다. 공유 저장소 방식 중 하나인 네트워크 파일 시스템(Network File System)과 마이그레이션 시간을 비교하고 안전성 확인을 위해 네트워크 패킷을 분석한다.
최근 우리나라에서는 기후변화로 인하여 기상재해의 위험성이 증가하고 있고 특히 강우로 인한 피해가 계속해서 강조되고 있다. 현재의 기상예보가 정량적 강우를 제시해주지만 피해 정도를 예상하는 데에는 여러 가지 어려움이 존재한다. 그래서 피해에 따른 영향을 파악하기 위해서는 유역별 한계강우량이 필요하다. 강우로 인한 피해는 지역별로 상이하게 일어나고 있고 각 유역의 특성인자가 고려된 분석은 한계가 존재한다. 또한 강우가 올 때마다 수문모델을 통한 강유-유출분석에는 시간이 많이 소모되고 단순 강우 데이터만 사용하여 분석되는 경우가 많다. 본 연구는 GIS데이터를 이용하였고 2개의 수문모델을 커플링하여 침수를 유발하는 한계유출량으로부터 한계강우량을 산정하였다. 산정결과는 실제사례와 비교하여 결과를 검증하였고 대체로 위험지역에 대해 피해가 난 것으로 분석되었다. 향후 본 연구를 통해 사전에 침수위험지역에 대해 대비를 할 수 있을 것이고 머신러닝 분석방법을 추가한다면 정확도가 높아질 것으로 예상된다.
대다수의 기업은 유무형의 자산을 보호하기 위한 방안으로, IT서비스망에 다양한 보안 장비를 구축하여 정보보호 모니터링을 수행하고 있다. 그러나 서비스 망 고도화 및 확장 과정에서 보안 장비 투자와 보호해야 할 자산이 증가하면서 전체 서비스망에 대한 공격 노출 모니터링이 어려워지는 한계가 발생하고 있다. 이에 대응하기 위한 방안으로 외부자의 공격과 장비 불법통신을 탐지할 수 있는 다양한 연구가 진행되었으나, 대규모 서비스망에 대한 효과적인 서비스 포트 오픈 감시 및 불법 통신 모니터링 체계 구축에 대한 연구는 미진한 편이다. 본 연구에서는 IT서비스망 전체 데이터 흐름의 관문이 되는 네트워크 백본장비의 'Netflow 통계 정보'를 분석하여, 대규모 투자 없이 광범위한 서비스망의 정보 유출 및 불법 통신 시도를 감시할 수 있는 프레임워크를 제안한다. 주요 연구 성과로는 Netflow 데이터에서 운영 장비의 텔넷 서비스 오픈 여부를 6개의 ML 머신러닝 알고리즘으로 판별하여 분류 정확도 F1-Score 94%의 높은 성능을 검증하였으며, 피해 장비의 불법 통신 이력을 연관하여 추적할 수 있는 모형을 제안하였다.
캡슐 내시경은 식도부터 항문까지 소화기관 전체를 한 번에 촬영할 수 있는 의료기기로, 한 번의 검사에서 평균 8~12시간의 길이와 5만장 이상의 프레임으로 구성된 영상을 생성한다. 그러나 생성된 영상에 대한 분석은 전문가에 의해 수작업으로 진행되고 있어서, 질병 영상 진단을 돕기 위한 영상 분석 자동화에 대한 수요가 증가하고 있다. 그 중에서도 본 연구에서는 위장관 내에서 발견될 수 있는 융기성 병변인 폴립 영상 자동 검출에 초점을 맞추었다. 본 연구에서는 멀티 스케일 분석을 통해 폴립 의심 영역을 추출하고, 이것을 원본 영상과 합성하여 폴립 학습을 강화시킬 수 있는 가중치 영상을 생성하는 기법을 제안한다. 수집한 452장의 데이터에 대해 머신 러닝 기법중 하나인 SVM과 RF로 실험한 결과, 원본 영상을 이용한 폴립 검출의 F1점수는 89.3%였지만, 생성된 가중치 영상을 통해 학습한 결과 F1점수가 93.1%로 향상된 것을 확인하였다.
금융당국의 채권추심 가이드라인, 추심업자에 대한 직접적인 관리 감독 수행 등의 노력에도 불구하고 채무자에 대한 불법, 부당한 채권 추심은 지속되고 있다. 이러한 불법, 부당한 채권추심행위를 효과적으로 예방하기 위해서는 비정형데이터 기계학습 등 기술을 활용하여 적은 인력으로도 불법 추심행위에 대한 점검 등에 대한 모니터링을 강화 할 수 있는 방법이 필요하다. 본 연구에서는 대부업체의 추심 녹취 파일을 입수하여 이를 텍스트 데이터로 변환하고 위법, 위규 행위를 판별하는 규칙기반 검출과 SVM(Support Vector Machine) 등 기계학습을 결합한 불법채권추심 분류 모델을 제안하고 기계학습 알고리즘에 따라 얼마나 정확한 식별을 하였는지를 비교해 보았다. 본 연구는 규칙기반 불법 검출과 기계학습을 결합하여 분류에 활용할 경우 기존에 연구된 기계학습만을 적용한 분류모델 보다 정확도가 우수하다는 것을 보여 주었다. 본 연구는 규칙기반 불법검출과 기계학습을 결합하여 불법여부를 분류한 최초의 시도이며 후행연구를 진행하여 모델의 완성도를 높인다면 불법채권 추심행위에 대한 소비자 피해 예방에 크게 기여할 수 있을 것이다.
본 연구에서는 승용차에서 사람들이 기기를 사용하기 위해 사용하는 기동어인 "Hi, KIA!"의 감성을 기계학습을 기반으로 분류가 가능한가에 대해 탐색하였다. 감성 분류를 위해 신남, 화남, 절망, 보통 총 4가지 감정별로 3가지 시나리오를 작성하여, 자동차 운전 상황에서 발생할 수 있는 12가지의 사용자 감정 시나리오를 제작하였다. 시각화 자료를 기반으로 총 9명의 대학생을 대상으로 녹음을 진행하였다. 수집된 녹음 파일의 전체 문장에서 기동어 부분만 별도로 추출하는 과정을 거쳐, 전체 문장 파일, 기동어 파일 총 두 개의 데이터 세트로 정리되었다. 음성 분석에서는 음향 특성을 추출하고 추출된 데이터를 svmRadial 방법을 이용하여 기계 학습 기반의 알고리즘을 제작해, 제작된 알고리즘의 감정 예측 정확성 및 가능성을 파악하였다. 9명의 참여자와 4개의 감정 카테고리를 통틀어 기동어의 정확성(60.19%: 22~81%)과 전체 문장의 정확성(41.51%)을 비교했다. 또한, 참여자 개별로 정확도와 민감도를 확인하였을 때, 성능을 보임을 확인하였으며, 각 사용자 별 기계 학습을 위해 선정된 피쳐들이 유사함을 확인하였다. 본 연구는 기동어만으로도 사용자의 감정 추출과 보이스 인터페이스 개발 시 기동어 감정 파악 기술이 잠재적으로 적용 가능한데 대한 실험적 증거를 제공할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.