• Title/Summary/Keyword: 머신비젼

Search Result 56, Processing Time 0.032 seconds

Machine Vision for Distributed Autonomous Robotic System (자율 분산 이동 로봇 시스템을 위한 머신비젼)

  • 김대욱;박창현;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.94-97
    • /
    • 2004
  • 독립된 자율로봇에서 머신비젼의 구동을 위해 본 논문에서는 DARS(Distributed Autonomous Robotic System)에 적용하기 위한 디지털 이미지 프로세싱을 연구하고, DARS의 개별 로봇에 이를 임베디드화하는 것을 연구한다. 따라서 로봇을 구동하기 위해 필요한 데이터를 CMOS 카메라로부터 수신하여 영상을 스캔한 후, 원영상을 신경망 알고리즘을 통해 클러스터링하여 필요한 데이터를 추출한다. 또 이를 사용자 컴퓨터 단말기 상에 디스플레이하고, 최종적으로 DARS의 자율 이동 로봇이 영상 데이터를 인지하여 특정한 선택 동작을 수행하도록 한다.

  • PDF

Study on Performance Variation of Machine Vision according to Velocity of an Object and Precision Improvement by Linear Compensation (측정물의 속도에 따른 머신비젼의 성능변화와 선형보상에 의한 정밀도 향상)

  • Choi, Hee-Nam;Kang, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.903-909
    • /
    • 2018
  • In this paper, performance analysis of machine vision techniques is presented to improve the convenience and speed of automatic inspection in the industrial field when machine vision is applied to the image not taken in the stationary state, but in the moving state on a conveyer. When the length of cylindrical rods used for automobiles was measured using the edge detection method, the conveying speed increased, and the uncertainty of the boundary between the background and the part image increased, which resulted in a shorter image of the object taken. This paper proposes a linear compensation method to predict the biased errors of the length measurements after examining the pattern of biased and random errors, respectively, with 6 different types of specimens and 7 velocity stages. The length measurement corrected by the linear compensation method had the same accuracy as the stationary state within the speed range of 30 cm/s and could enhance the application capability in automatic inspections.

Automatic Recognition of Wire Bobbins using Machine Vision Techniques (머신 비젼 기술을 이용한 전선 보빈의 자동인식)

  • Tai-Hoon Cho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.494-498
    • /
    • 1998
  • 이 논문은 에나멜 전선의 제조공정의 자동화에 있어서 핵심역할을 하는 보빈의 자동인식을 위한 머신 비젼 시스템에 관한 것이다. 이 시스템의 역할은 컨베이어 라인의 팔레트 위에 놓인 보빈들의 영상을 CCD 카메라로 취득, 분석하여 보빈 형태, 색상, 제조공정번호 등의 다양한 정보를 추출하여, 전체 생산공정을 제어하는 주 컴퓨터로 보내는 일을 수행한다. 이 비젼 시스템은 개발된 후 에나멜 전선 생산공장에 설치되어 일정 시험기간을 거쳐 현재 성공적으로 운영되고 있다.

  • PDF

A Study on an Image Noise Erase Method By to be an Image Noise Frequent Occur for Raining, in Measurement Machine Vision System for using CCD Camera Of Pantograph Sliding Plate Abrasion (판타그라프 습판마모의 머신비젼 측정에서 우천시 발생하는 영상의 노이즈 제거방법에 관한 연구)

  • Lee, Seong-Gwon;Lee, Dae-Won;Kim, Gil-Dong;Oh, Sang-Yoon;Kim, Seong-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.872-898
    • /
    • 2007
  • Pantograph sliding plate abrasion auto-detect system, one of the electric rail car auto-detecting devices, is a system that decides how much abrasion and when to replace without an inspector physically looking at the abrasion on the wet plate using machine vision, a cutting-edge technology. This paper covers the cause of deteriorating reliability that affects pantograph wet plate edge detection due to noise added to the video when it rains. In order to remove such noise, problems should be checked through Smoothing, Averaging mask and Median filter using filtering technique and stable edge detection without being affected by noise should be induced in video measurement used in machine vision technology.

  • PDF

Machine vision applications in automated scrap-separating research (머신비젼 시스템을 이용(利用)한 스크랩 자동선별(自動選別) 연구(硏究))

  • Kim, Chan-Wook;Lee, Seung-Hyun;Kim, Hang-gu
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.05a
    • /
    • pp.57-61
    • /
    • 2005
  • In this study, the machine vision system for inspection using color recognition method have been designed and developed to automatically sort out a specified material such as Cu scraps or other non-ferrous metal scraps mixed in Fe scraps. The system consists of a CCD camera, light sources, a frame grabber, conveying devices and an air nozzled ejector, and is program-controlled by a image processing algorithm. The ejector is designed to be operated by an I/O interface communication with a hardware controller. The sorting examination results show that the efficiency of separating Cu scraps from the Fe scraps mixed with Cu scraps is around 90 % at the conveying speed of 15 m/min. and the system is proven to be excellent in terms of its efficiency. Therefore, it is expected that the system can be commercialized in shredder firms, if the high-speed automated sorting system will be realized.

  • PDF

Machine Vision Applications in Automated Scrap-separating Research (머신비젼 시스템을 이용(利用)한 스크랩 자동선별(自動選別) 연구(硏究))

  • Kim, Chan-Wook;Kim, Hang-Goo
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.3-9
    • /
    • 2006
  • In this study, a machine vision system using a color recognition method has been designed and developed to automatically sort out specified materials from a mixture, especially Cu and other non-ferrous metal scraps from a mixture of iron scraps. The system consists of a CCD camera, light sources, a frame grabber, conveying devices and an air-nozzle ejector, and is program-controlled by a image processing algorithms. The ejectors designed to be operated by an I/O interface communication with a hardware controller. In the functional tests of the system, its efficiency in the separation of Cu scraps from its mixture with Fe ones reaches to 90% or more at a conveying speed of 15m/min, and thus the system is proven to be excellent in terms of the separating efficiency. Therefore, it is expected that the system can be commercialized in the industry of shredder makers if an automated sorting system of high speed is realized.

Measurement of Tool Wear using Machine Vision in Flat End-mill (머신비젼을 이용한 평 엔드밀 공구의 마모측정)

  • Kim, Tae-Young;Kim, Eung-Nam;Kim, Min-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • End milling is available for machining the various shape of products and has been widely applied in many manufacturing industries. The quality of products depends on a machine tool performance and machining conditions. Recognition characteristics of the cutting condition is becoming a critical requirement for improving the utilization and flexibility of present-day CNC machine tools. The measurement of tool wear would be performed by coordinate-measuring machine(CMM). However, the usage of CMM requires much time and cost. In order to overcome the difficulties, on-line measurement(OLM) system was applied for a tool wear measurement. This study shows a reliable technique for the reduction of machining error components by developing a system using a CCD camera and machine vision to be able to precisely measure the size of tool wear in flat end milling for CNC machining. The CCD camera and machine vision attached to a CNC machine can determine tool wear quickly and easily.

An Automated Machine-Vision-based Feeding System for Engine Mount Parts (머신비젼 기반의 엔진마운트 부품 자동공급시스템)

  • Lee, Hyeong-Geun;Lee, Moon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.177-185
    • /
    • 2001
  • This paper describes a machine-vision-based prototype system for automatically feeding engine-mount parts to a swaging machine which assembles engine mounts. The system developed consists of a robot, a feeding device with two cylinders and two photo sensors, and a machine vision system. The machine vision system recognizes the type of different parts being fed from the feeding device and estimates the angular difference between the inner-hole center of the part and the point predetermined for assembling. The robot then picks up each part and rotated it through the estimated angle such that the parts are well assembled together as specified. An algorithm has been developed to recognize different part types and estimate the angular difference. The test results obtained for a set of real specimens indicate that the algorithm performs well enough to be applied to prototype system.

  • PDF