• Title/Summary/Keyword: 머서화가공

Search Result 9, Processing Time 0.023 seconds

액체 암모니아 처리 면직물의 물성 및 염색성

  • Lee, Chang-Soo;Im, Yong-Jin;Jeon, Sung-Ki;Lee, Chung;Kim, Tae-Kyung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2003.04a
    • /
    • pp.137-143
    • /
    • 2003
  • 수산화나트륨을 이용한 면의 머서화 가공은 광택, 염색성의 향상, 치수안정화, 흡습성의 증가, 강력의 향상 등의 장점에 의해 면의 가공에 있어 일반적 공정이 되었다. 그러나 일반적으로 행해져온 상온에서의 수산화나트륨에 의한 머서화는 점도가 높아 섬유내부까지는 침투가 어려워 직물의 표면만이 강하게 머서화되어 태가 딱딱해진다는 결점이 있다. 이에 비해 고온에서 머서화를 할 경우 섬유의 내부까지 알칼리의 침투가 용이해지고 균일한 처리가 가능하다. (중략)

  • PDF

알칼리 처리에 따른 Tencel의 Lateral Order변화 - 수산화나트륨에 의한 고온 머서화의 효과 -

  • 강영아;김경효;이문철;조현혹
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.310-314
    • /
    • 1998
  • 면직물에 있어서 머서화는 고부가가치를 부여한다는 점에서 중요한 가공공정이다. 일반적으로 머서화공정은 수산화나트륨(NaOH)을 이용하여 농도 15~30%, 온도 0~4$0^{\circ}C$의 범위에서 행한다. 이와같은 머서화공정에 있어서 NaOH 용액의 농도와 온도를 변화시켜 면을 머서화한 경우의 상태도를 Figure 1에 나타내었다[1]. 셀룰로오스와 NaOH의 반응은 발열반응이므로, 온도가 높아지면 머서화가 충분히 진행되지 않는다.(중략)

  • PDF

Mercerization of Cotton Fabric in degassed NaOH solution (용존기체성분을 제거한 NaOH수용액에서의 면직물의 Mercerization)

  • 김승일;이의소;김채진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.51-54
    • /
    • 2001
  • Mercerization은 대부분의 면제품에 널리 적용되고 있는 가공방법이나 일반적으로 이루어지고 있는 상온에서의 NaOH에 의한 mercerization은 용액의 표면장력과 점도 때문에 알칼리가 섬유내부까지 깊숙이 침투하지 못하고 이로 인해 섬유의 표면에만 Mercerization이 진행되어 태가 뻣뻣해지는 단점이 있다. 이러한 jamming effect에 의한 표면(skin)과 내부(core)간의 머서화차이를 제거하기 위하여 고온 머서화가공에 대한 연구가 진행된 바 있으나 에너지의 과다소비라는 측면에서 상업화되기에는 문제가 있는 실정이다. (중략)

  • PDF

A Study on the Physical Properties and Color of the Mercerized Cotton Dyed by Gardenia (머서화가공면직물(加工綿織物)의 치자염료(梔子染料)에 의한 염색성 연구(染色性 硏究))

  • Choi, Jeong-Im;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.10 no.5
    • /
    • pp.180-189
    • /
    • 2006
  • Mercerization of cotton fabrics affects their various properties including physical properties and dyeing behavior. In this study, the concentration levels of NaOH solution, with 18% and 25%, and the mercerization temperature levels, $22^{\circ}C,\;10^{\circ}C$, and $5^{\circ}C$, were changed in order to investigate the physical properties and dyeing behavior using Gardenia, a natural dyestuff, and direct dyes. The effect of tension during the mercerization was also investigated. In order to investigate the dyeing behavior of Gardenia, a direct dyestuff was employed as a comparative material for better objective analysis and evaluation. It was found that the mercerization condition of 18% NaOH concentration at $10^{\circ}C$, without tension, resulted in the highest ${\Delta}E$ value, when dyed with Gardenia.

Hand and Physical Properties of Mercerized Cotton Fabric using KES (머서화 가공(加工) 면직물(綿織物)의 KES에 의(依)한 물리적(物理的) 특성(特性)과 태(態)의 변화(變化)에 대(對)한 연구(硏究))

  • Choi, Jeong-Im;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.11 no.1
    • /
    • pp.125-135
    • /
    • 2007
  • Each cotton fiber is a unicellular hair collected from the seed of cotton plant. The fiber contains many convolutions along its length. Mercer was the first to suggest caustic soda treatment of cotton in commercial application. Mercerization has been commercially used since Lowe's suggestion to endow cotton with increased strength and affinity for dyes with additional properties such as fabric touch or luster. In this study, cotton fabric specimens were mercerized to investigate the changes in physical and mechanical properties pertaining to the hand or touch of fabrics. Physical properties were measured using the KES(Kawabata Evaluation System).

Biodegradabilities of Cotton Fabrics treated with Silicones (실리콘 처리한 면직물의 생분해성)

  • 김보형;박정희;임승순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.8
    • /
    • pp.1048-1056
    • /
    • 2004
  • Hydrophilicities of finished cotton fabrics were evaluated in respect of moisture regain and wickability. Changes in internal structure were determined using X-ray diffraction and surface changes in degraded samples were observed through a microscopy. Activated sludge test, soil burial test and enzyme hydrolysis were employed to evaluate the biodegradabilities. In addition, correlation analysis was done between biodegradability and the factors affecting biodegradability in each evalution methods. It was shown that hydrophilicities of silicone finished specimens were lower than that of untreated cotton and decreased in a row of PDMS(polydimethyl siloxane : -CH$_3$)>AFS(amino functional siloxane ; -C$_3$H$_{6}$ NHC$_2$H$_4$NH$_2$)>MHPS(methylhydrogen polysiloxane : -H, Cat : (C$_{17}$ H$_{35}$ COO)$_2$Zn) Although, moisture regain of mercerized cotton was higher than those of the others, wickability was shown to be lower. It was represented that crystalinities of cotton fabrics decreased by the silicone treatment. In activated sludge test and soil burial test, biodegradabilities of silicone treated specimens were lower than that of untreated cotton, where specimens of higher biodegradability exhibited higher biodegradability except mercerized ones. The results from enzyme hydrolysis, however, showed somewhat different tendency in that biodegradability was more closely related with the crystallinities of fabrics. It can be thought that enzyme hydrolysis is carried out for short time, physical accessibility becomes important.

A study for Ripple effect and Dye Characteristic of Ripple Finished Cotton Fabrics (Ripple가공(加工) 면직물(綿織物)의 Ripple효과(效果)와 꼭두서니염색(染色) 연구(硏究))

  • Choi, Jeong-Im;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.11 no.4
    • /
    • pp.101-110
    • /
    • 2007
  • Since cotton fabrics with ripple finish treatment form wavy furrows on the surface or bumpy patterns, air circulation during wearing is good and the fabric is cool to the touch. The finishing principle is based on the mercerization, which utilizes the fact that cotton fibers contract in a concentrated NaOH solution. In this study, as fabric specimens, cotton fabrics with yarn counts of 40's, 60's and 80's were used. Concentrations of the NaOH solutions were 15%, 25%, and 35%. After dyeing fabrics using Rubia akane nakai, color and other properties were measured. As the concentration of the NaOH solution increased, the fabric became thicker and denser, and the number of occurrence of the prominence and depression per unit length became larger. The color of the region contracted by ripple finish became darker after dyeing, while the color of the untreated region became lighter, which enhanced the cubic effect of the ripple finish. As the count of the cotton yarn increased, the dyeability became better. As the concentration of the NaOH solution increased, the air permeability became lower.

Recovery of Caustic Soda in Textile Mercerization by Combined Membrane Filtration (복합 막분리 공정에 의한 섬유가공 공정에서의 가성소다 회수)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Cho, Jin-Ku;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1273-1280
    • /
    • 2008
  • This study sought to establish the optimum operating condition for the recovery of caustic (NaOH) solution from mercerization in textile process. As main factors, the silt density index (SDI) evaluation of ceramic membrane for the application of nanofiltration/reverse osmosis (NF/RO) membrane, the recovery yield measurement of caustic solution for the application of polymeric membrane, the optimum condition of chemical cleaning for the membrane regeneration, the optimum removal condition of total organic carbon (TOC), turbidity, color, and the permeate flux of ceramic membrane/polymeric membrane combined process were investigated. As results, ceramic ultrafiltration (UF) in the first step and nanofiltration (NF) in the second step were found to be suitable for the removal of total suspended solid (TSS), residual organics, turbidity including color, and the recovery of caustic solution from caustic wastewater stream in mercerization process. When only the ceramic UF membrane was used, the rejection efficiency of both of TSS and turbidity was more than 99.0%, and the color and TOC were rejected about 74.7% and 49.2%, respectively. Meanwhile, the combined membrane precess of UF and NF membranes showed even more efficient removal abilities and thus more than 99.9% of TSS and turbidity, 87.7% of color, and 78.2% of TOC were removed. In particular, 91.3% of NaOH was successfully recovered with 83.7% of total volume in the combined membrane process. With this regard, a clean caustic solution was obtained in a high purity, which can be reused for mercerization process, expecting to offer economical benefits.