이 논문은 Matched Filter 기술을 사용해 얼굴 특징점 위치를 추출하는 연구에 대해서 기술한다. 기본 목표는 얼굴의 서로 다른 8개( 양쪽 눈과 눈썹, 머리선, 코, 입, 턱 )의 부분을 구분할 수 있는 필터들을 개발하는 것이다. 이런 Matched Filter는 Fourier 역변환을 사용해 훈련영상(Training Image)으로부터 얻을 수 있다. 실험평가는 베른대학의 얼굴 데이터베이스에 근거한다. 우리는 여기서 다양한 얼굴의 방향성에 효과적으로 적용할 수 있도록 하는 훈련 영상자료가 무엇인지 알 수 있다. 그리고 안경을 썼을 때 얼굴을 인식할 수 있는 가장 좋은 방법도 알아본다.
목적: 머리 위치에 따른 사위도 변화를 평가하고, 외안근의 불균형과 관련하여 좌 우안의 프리즘 량을 달리할 필요성을 확인하고자 하였다. 방법: 20~30세 남자 44명(88안), 여자 16명(32안)을 대상으로 차폐검사, 자각적 굴절검사, 사위검사 및 융합여력검사를 실시하였다. 머리기울임 검사, 얼굴돌림 검사에 따른 사위 변화량을 비교분석하기 위해 본 그래페를 이용하여 측정하였다. 결과: 머리기울임과 얼굴돌림에 따른 사위도 변화는 Morgan 표준의 수평사위 비정상군에서 유의한 차이를 보였고(p<0.05), 특히 근거리 Sheard 기준으로 수평사위 처방이 필요한 그룹에서 근거리 수평사위 변화량이 크게 나타났다(p<0.05). 수평사위 비정상군의 원거리 Sheard 기준으로 처방이 필요한 그룹과 필요하지 않은 그룹 모두 머리 위치에 따라 사위도 변화는 근거리일 경우 보다는 적었다. 결론: 수평사위 비정상군의 Sheard 기준 처방이 필요한 그룹에서 근거리 머리기울임, 얼굴돌림의 수평사위 변화량이 크게 나타났다. 따라서 근거리 사위에서 프리즘 처방을 해야 할 때 좌 우 외안근의 불균형의 존재를 확인하여 좌 우안에 프리즘량을 달리 처방할 필요성이 있는 것으로 본다.
목적: 머리위치와 사위의 관련성, 습관적인 머리위치 평가의 유용성을 평가하고자 하였다. 방법: 무작위 참여자 중 사위가 있는 22명(남자 20명, 여자 2명, 평균나이 $23.6{\pm}2.7$세)을 대상으로 하였다. 모든 대상자는 문진, 차폐검사, 굴절검사, 사위 및 융합여력검사를 실시하였다. 습관적인 머리위치(머리기울임과 얼굴돌림)는 Impression IST에 의한 타각적 측정과 검사자에 의한 주관적 관찰로 평가하였다. 결과: 사위가 있는 대상자에서 습관적인 머리위치가 드러날 수 있다는 것을 확인할 수 있었다. 프리즘 처방이 필요한 15명의 대상자에서 원거리 사위도와 얼굴돌림에서 유의한 Spearman 상관관계를 보였다($\rho$ = 0.524, p = 0.045). 사위 이상 대상자에서 머리위치와 사위도의 상관성은 없었다. 타각적 측정과 자각적 관찰의 상관성은 없었으나 타각적 측정은 정밀하고 자각적 관찰은 판별력이 있는 방법으로 평가되었다. 결론: 사위에서 이상두위 현상이 나타났으며, 이러한 결과들은 사위에서 모든 주 주시방향에서 습관적인 머리위치를 관찰할 필요가 있음을 암시한다.
본 논문에서는 다중 지역 이진 패턴(Multi-scale Bock LBP, MB-LBP) 특징과 랜덤 포레스트에 기반한 새로운 기법의 머리 방향 분류 기법을 제안한다. 제안 기법에서는 occlusion 과 조명의 변화에 강인한 분류 정확도를 얻기 위해서 랜덤화된 트리를 학습하는 것을 목표로 한다. 우선, 얼굴 이미지로부터 많은 MB-LBP 특징을 추출하고, 얼굴 영상들을 랜덤하게 입력하고 MB-LBP 크기 파라미터와 같은 랜덤 특징과 블록 좌표들을 사용하여 트리를 생성한다. 게다가 각 노드에서 정보 이득을 최대화 하는 트리의 내부 노드를 생성하기 위해서 uniform LBP 의 특성을 고려한 분할 함수를 개발한다. 랜덤화된 트리는 랜덤 포레스트에 포함되어 있으며 마지막 결정단계에서 Maximum-A-Posteriori criterion 으로 최종 결정을 한다. 실험 결과는 제안 기법이 다양한 조명, 자세, 표현, occlusion 상황에서 기존의 방법보다 개선된 성능으로 머리 방향을 분류 할 수 있음을 보여준다.
본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90% 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.
최근 스포츠 레져산업의 발전으로 스포츠가 대중화됨에 따라 안전에 대한 문제가 높아지고 있으며, 각종 스포츠 경기시 발생되는 충격에 의한 보호의 기능과 경기력 향상을 위하여 밀차형 모자의 기능성과 적합성을 요구하고 있다. 특히 헬멧이나 특수용도의 모자는 적합도 문제가 더욱 중요하므로 머리 및 얼굴에 착용되는 산업제품 설계 시 이러한 부위들이 세밀하게 고려되어야 한다. (중략)
머리의 자세 및 움직임 추적은 응시추적 및 시각운율 연구에서 필수적이다. 일반적으로 머리자세를 추정하는 방법은 보정된 카메라를 통해 추출된 얼굴의 특징점 정보를 이용한다. 그러나 실제 응용 분야에서는 보정되지 않은 카메라를 통한 머리 움직임을 추정해야 할 경우가 발생한다. 이에 따라 본 논문에서는 보정되지 않은 하나의 카메라를 이용, 단일특징점 정보를 이용한 머리 자세 추정 방법을 확장하여 최적화 기법을 도입한 다특징점 정보 기반 머리 자세 추정방법에 대하여 논하였다.
This study was aimed to provide the fundamental and various measurement data of the head and face for Korean children. Two hundred sixty nine female children, aged nine to twelve years, participated for this study. The 28 regions on the head and face of the subjects were directly measured by the expert experimenters. Factor analysis, cluster analysis, GLM analysis and Tukey HSD test were performed' using these data. Through factor analysis, six factors were extracted upon factor scores and those factors comprised 71.42% for the total variances. Four clusters as their head and face shape were categorized using six factor scores by cluster analysis. Type 1 was characterized by the shorter head & face length and width and the lowest position from forehead to nose. Type 2 had the longer head & face length and width and the highest ear position and the largest mouse width. Type 3 was characterized by the longest and head & face type and the widest head & face girth. Type 4 was characterized by shortest head & face length the lower ear and lips position.
본 논문에서는 복잡한 배경에서의 얼굴 추출 방법을 제안한다. 제안된 알고리즘은 적응 퍼지 색 분할기법을 사용하여 얼굴색과 머리색을 분할시킨다. 얼굴색 분포는 Y,Cb,Cr 색 공간내에서 유도되어지고, 조명값에 적응적인 퍼지 시스템을 사용하여 얼굴색을 구분해낸다. 머리색은 RGB 색 공간내에서 구분되어진다. 전처리 과정을 거쳐 추출되어진 얼굴색과 머리색 영역에 컨벡스 헐을 적용하여 그들의 관계를 통해 최종적인 얼굴 영역이 추출되어진다. 제안된 방법은 기존의 패턴 매칭 방법에 비해 효율적인 성능을 나타낸다. 제안된 알고리즘의 유효성을 실험을 통해 증명하며, 색 영역에서의 제한 조건 없이 성공적으로 얼굴 영역을 추출해 냄을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.