• Title/Summary/Keyword: 머리구속장치

Search Result 4, Processing Time 0.019 seconds

A Biomechanical Analysis in the Neck Injury according to the Position of Read Restraint During Low Speed Rear-End Impacts (저속 정후면 추돌시 머리구속장치 위치에 따른 목 상해에 관한 생체 역학적 연구)

  • Jo Huichang;Kim Youngeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.132-139
    • /
    • 2005
  • The driving position of head restraints and the relative risk of neck injury were studied in the computer simulation. MADYMO human model with the detail neck model was used to define the magnitude and direction of internal forces acting on the cervical spine during rear-end impact and to determine the effect of the initial position of the occupant's head with respect to the head restraints. Maximum reaction forces were generated during the head contact to the restraint and relatively large forces were generated at each spinal components in lower cervical spine in proportion to backset and height distance increasement.

A Study on the Evaluation of Head Restraint System in Domestic Cars (국내생산차량의 시트 머리구속장치 평가에 관한 연구)

  • 조휘창;박인송;김영은
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.99-105
    • /
    • 2004
  • The car seat head restraint is used for neck injury(whiplash injury) prevention in rear end impacts. The purpose of this study was to evaluate the seat head restraints for the total number of 34 domestic cars. H-POINT machine and HRMD(head restraint measuring device) were applied to measure backset(the distance between head and seat head restraint) and height(height gap between head and seat head restraint). For tendency study of driver's head position, we took the 320 driver's pictures in the street. As results, There were only five percent drivers in good and acceptable zone. For car seat head restraint system, the results was 9 cars for good zone, 10 cars for acceptable zone, 9 cars for marginal zone and 6 cars for poor zone were evaluated. For a precise evaluation the of whiplash injury, detailed FE neck model will be developed and the clinical database should be constructed for model validation.

Electro-magnetic measuring system for head rotations (전자기학적 방법을 이용한 머리운동 측정 시스템)

  • 남문현;김정현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.652-657
    • /
    • 1986
  • 본 연구는 시야나 머리운동을 구속하지 않고 수평 및 수직 머리운동을 측정하여 처리하는 방법에 관한 것이다. 이를 위해 Helmholtz 코일을 적절히 구성하여 균일 자계를 발생시키고 탐지 코일을 이용하여 머리운동의 동적 특성을 검출하고, 검출된 신호는 신호처리 장치를 구성하여 처리하는 방법을 개발하고 다른 연구결과와 비료 고찰하였다.

  • PDF

Structural Analysis of Spaceborne Two-axis Gimbal-type Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 안테나의 구조해석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2018
  • A two-axis gimbal-type antenna for a Compact Advanced Satellite (CAS) is used to efficiently transmit high resolution image data to a ground station. In this study, we designed the structure of a two-axis gimbal-type antenna while applying a launch lock device to secure its structural safety under a launch environment. To validate the effectiveness of the structural design, a structural analysis of the antenna was performed. First, a modal analysis was performed to investigate the dynamic responses of the antenna with and without the mechanical constraints of the launch lock device. In addition, a quasi-static analysis was performed to confirm the structural safety of the antenna structure and bolt I/Fs between the antenna base and the satellite. The suitable range of constraint force on the launch lock device was also determined to ensure the structural safety and mechanical gapping of the ball & socket interfaces, which places multi-constraints on the azimuth and elevation stage of the antenna.