맵리듀스는 데이터 집약적인 어플리케이션에서 대량의 데이터를 분산 병렬 처리하기 위한 프로그래밍 모델이다. 하둡은 맵리듀스의 오픈소스 구현으로 맵리듀스를 사용하기 위한 도구로 많이 알려져 있다. 실제 하둡을 이용하여 맵리듀스를 적용할 때 맵 태스크 단계는 병렬로 수행되어 순차처리에 비해 시간이 단축된다. 그러나 맵 태스크의 결과물인 중간 단계의 데이터는 단일 리듀스 태스크에서 처리됨으로써 시간 지연이 발생한다. 따라서 본 논문에서는 단일 리듀스 태스크 처리에서 발생하는 오버로드 및 시간 지연 문제를 해결하기 위해 적응적으로 리듀스 태스크를 할당하는 스케줄링 기법을 제안하고 실험을 통해 이 기법의 성능을 검증한다.
빅 데이터는 일반적으로 사용되는 데이터 관리 시스템으로 데이터의 처리, 수집, 저장, 탐색, 분석을 할 수 없는 큰 규모의 데이터를 말한다. 빅 데이터 기술인 맵 리듀스(MapReduce)를 이용한 병렬 GA 연구는 Hadoop 분산처리환경을 이용하여, 맵 리듀스에서 GA를 수행함으로써 GA의 병렬처리를 쉽게 구현할 수 있다. 기존의 맵 리듀스를 이용한 GA들은 GA를 맵 리듀스에 적절히 변형하여 적용하였지만 잦은 데이터 입출력에 의한 수행시간 지연으로 우수한 성능을 보이지 못하였다. 본 논문에서는 기존의 맵 리듀스를 이용한 GA의 성능을 개선하기 위해, 맵과 리듀싱과정을 개선하여 맵 리듀스 특징을 이용한 새로운 MRPGA(MapReduce Parallel Genetic Algorithm)기법을 제안하였다. 기존의 PGA의 topology 구성과 migration 및 local search기법을 MRPGA에 적용하여 최적해를 찾을 수 있었다. 제안한 기법은 기존에 맵 리듀스 SGA에 비해 수렴속도가 1.5배 빠르며, sub-generation 반복횟수에 따라 최적해를 빠르게 찾을 수 있었다. 또한, MRPGA를 활용하여 빅 데이터 기술의 처리 및 분석 성능을 향상시킬 수 있다.
최근 대규모 데이터의 처리와 관리를 위한 분산 저장 및 처리 시스템의 연구 및 활용이 중요해지고 있다. 대표적인 분산 저장 및 처리 프레임워크로써 하둡(Hadoop)이 널리 활용되고 있다. 하둡 분산 파일 시스템을 기반으로 수행되는 맵-리듀스 에서의 태스크 할당은 데이터의 지역성(locality)를 고려하여 최대한 가깝게 할당한다. 하지만 맵-리듀스 에서의 데이터 분석 작업에서 작업 형태에 따라 빈번하게 요청되는 데이터가 존재한다. 이러한 경우, 해당 데이터의 낮은 지역성으로 인해 수행시간 증가 및 데이터 전송의 지연의 문제점을 야기 시킨다. 본 논문에서는 맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법을 제안한다. 제안하는 기법에서는 데이터 접근 패턴에 따라 높은 접근 빈도를 보이는 핫-데이터에 대한 복제본 최적화 알고리즘을 활용하여 데이터 지역성을 향상시키고 결과적으로 작업 수행시간을 감소시킨다. 성능평가 결과, 기존 기법에 비해 접근 빈도의 부하가 감소하는 것을 확인하였다.
최근 소셜 미디어의 성정과 모바일 장치와 같은 디지털 기기의 활용이 증가함에 따라 데이터가 기하급수적으로 증가하였다. 이러한 대용량의 데이터를 처리하기 위한 대표적인 프레임워크로 맵-리듀스가 등장하였다. 하지만 전용 분산 컴퓨팅 환경에서의 균등한 데이터 배치를 기반으로 수행되는 기존 맵-리듀스는 가용성이 다른 비-전용 분산 컴퓨팅 환경에서는 적합하지 않다. 이를 고려한 비-전용 분산 컴퓨팅 환경에 최적화된 데이터 재배치 알고리즘이 제안되었지만, 데이터 재배치 알고리즘을 수행함으로써 재배치에 많은 시간을 필요로 하고, 불필요한 데이터 전송에 의한 네트워크 부하가 발생한다. 본 논문에서는 비-전용 분산 컴퓨팅 환경에서 맵-리듀스의 성능 최적화를 위한 효율적인 데이터 재배치 알고리즘을 제안한다. 제안하는 기법에서는 노드의 가용성 분석 모델을 기반으로 노드의 데이터 블록 비율을 연산하고, 기존의 데이터 배치를 고려하여 전송함으로써 네트워크 부하를 감소시킨다. 성능평가 결과 기존 기법에 비해 데이터 재배치 블록 비율이 약 75% 감소하였다.
최근 소셜 미디어의 성장과 모바일 장치와 같은 디지털 기기의 활용이 증가함에 따라 데이터가 기하급수적으로 증가하였다. 이러한 대용량의 데이터를 처리하기 위한 대표적인 프레임워크로 맵-리듀스가 등장하였다. 하지만 전용 분산 컴퓨팅 환경에서 균등한 데이터 배치를 기반으로 수행되는 기존 맵-리듀스는 가용성이 다른 비-전용 분산 컴퓨팅 환경에서는 적합하지 않다. 이러한 비-전용 분산 컴퓨팅 환경을 고려한 데이터 재배치 알고리즘이 제안되었지만, 재배치에 많은 시간을 필요로 하고, 불필요한 데이터 전송에 의한 네트워크 부하가 발생한다. 본 논문에서는 비-전용 분산 컴퓨팅 환경에서 맵-리듀스의 성능 최적화를 위한 효율적인 데이터 재배치 알고리즘을 제안한다. 제안하는 기법에서는 노드의 가용성 분석 모델을 기반으로 노드의 데이터 블록 비율을 연산하고, 기존의 데이터 배치를 고려하여 전송함으로써 네트워크 부하를 감소시킨다. 성능평가 결과, 제안하는 기법이 기존 기법에 비해 성능이 우수함을 확인하였다.
최근 대규모 데이터의 처리와 관리를 위한 분산 저장 및 처리 시스템의 연구 및 활용이 중요해지고 있다. 대표적인 분산 저장 및 처리시스템으로써 하둡(Hadoop)이 널리 활용되고 있다. 하둡 분산 파일 시스템을 기반으로 수행되는 맵-리듀스에서 테스크 할당은 데이터의 로컬리티를 고려하여 최대한 가깝게 할당한다. 하지만 맵-리듀스에서의 데이터 분석 작업에서 작업 형태에 따라 빈번하게 요청되는 데이터가 존재한다. 이러한 경우, 해당 데이터의 낮은 로컬리티로 인해 수행시간 증가 및 데이터 전송의 지연의 문제점을 야기 시킨다. 본 논문에서는 맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법을 제안한다. 제안하는 기법에서는 데이터 접근 패턴에 따라 높은 접근 빈도를 보이는 핫-데이터에 대한 복제본 최적화 알고리즘을 활용하여 데이터 로컬리티를 향상시키고 결과적으로 작업 수행시간을 감소시킨다. 제안하는 기법은 기존 기법에 비해 모든 노드의 데이터 이동이 감소하여 접근빈도의 분포가 균형적인 것을 확인하였다. 성능평가 결과, 기존 기법에 비해 접근 빈도의 부하가 약 8% 감소하는 것을 확인하였다.
빅 데이터의 데이터 수집 및 분석 기술에 대한 연구는 컴퓨터 과학 분야에서 각광 받고 있다. 또한 소셜 미디어로 인한 대량의 비정형 데이터 분석을 요구하는 다양한 분야에 접목되어 효용성을 인정받고 있다. 그러나 빅 데이터 개념을 기반으로 하는 하둡과 스파크는 유즈케이스에 따라 성능이 크게 달라진다는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 하둡의 맵리듀스를 줄이고 아파치 스파크를 이용한 빅 데이터 분석을 위하여 머신러닝 알고리즘인 K-Means 알고리즘을 이용하여 프로세싱 모델의 성능을 비교한다.
현재의 인터넷 환경은 컴퓨터를 이용한 접근뿐만 아니라 IoT로 전이되고 있다. 이에 따라 발생하는 데이터는 방대해지고 있다. 이 데이터들을 어플리케이션에 맞추어 수정 없이 제공한다면 해당 어플리케이션은 원래 성능을 발휘하기 어렵다. 이에 본 논문에서는 수집된 데이터를 정제하기 위해 빅 데이터 처리 기법인 맵 리듀스를 이용하여 데이터를 필터링하는 기법에 대해서 제안한다. 맵 리듀스에 지식 식별을 위한 단계를 추가함으로써 센서에서 발생하는 데이터를 필터링하는 과정에서 이질성을 해결하고자 한다. 이를 위해 XMDR을 이용한다.
맵리듀스 프레임워크는 개발의 편의성, 높은 확장성, 결함 내성 기능을 제공하며 다양한 대용량 데이터 처리에 사용되고 있다. 또한, 최근의 데이터의 폭발적 증가는 높은 확장성을 제공하는 맵리듀스 프레임워크의 도입의 필요성을 더욱 증가시키고 있다. 이 경우 하나의 단일 클러스터에서 처리할 수 있는 계산 용량을 넘어설 수 있으며, 이를 위하여 클라우드 컴퓨팅 서비스 등에서 계산자원을 빌려오게 된다. 하지만 현재의 맵리듀스 프레임워크는 단일 클러스터 환경을 가정하고 설계되었기에 여러 개의 클러스터로 이루어진 환경에서 수행시킬 경우 전체 계산자원의 이용률이 떨어져서 투입된 자원에 비해 전체적인 성능이 낮아지는 경우가 발생하게 된다. 본 연구에서는 이의 원인이 맵과 리듀스 단계 사이에 존재하는 중간결과의 전송에 있음을 밝히고, 이의 전체 맵리듀스 프레임웍의 성능에 미치는 영향에 대하여 분석해보았다.
Jeopardy 퀴즈쇼와 같은 DeepQA 환경에서 인간을 대신해 컴퓨터가 효과적으로 답하기 위해서는 인물, 지리, 사건, 역사 등을 포함하는 광범위한 지식베이스와 이를 토대로 한 빠른 시공간 추론 능력이 필요하다. 본 논문에서는 대표적인 병렬 분산 컴퓨팅 환경인 하둡/맵리듀스 프레임워크를 이용하여 방향 및 위상 관계를 추론하는 효율적인 대용량의 공간 추론 알고리즘을 제시한다. 본 알고리즘에서는 하둡/맵리듀스 프레임워크의 특성을 고려하여 병렬 분산처리의 효과를 높이기 위해, 지식 분할 문제를 맵 단계에서 해결하고, 이것을 토대로 리듀스 단계에서 효과적으로 새로운 공간 지식을 유도하도록 설계하였다. 또한, 본 알고리즘은 초기 공간 지식베이스로부터 새로운 지식을 유도할 수 있는 기능뿐만 아니라 초기 공간 지식베이스의 불일치성도 미연에 감지함으로써 불필요한 지식 유도 작업을 계속하지 않도록 설계하였다. 본 연구에서는 하둡/맵리듀스 프레임워크로 구현한 대용량 공간 추론기와 샘플공간 지식베이스를 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제시한 공간 추론 알고리즘과 공간 추론기의 높은 성능을 확인 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.