• 제목/요약/키워드: 맨틀

Search Result 214, Processing Time 0.028 seconds

Petrological Study on the Mantle Xenolith from Dongsuak Crater, Jeju Island (제주도 동수악 분화구에서 산출되는 맨틀포획암의 암석학적 연구)

  • Kil, Youngwoo;Hong, Sei Sun;Lee, Choon Oh;Ahn, Ung San
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • Dongsuak crater, located in the mid-mountainous region of Jeju Island, is located at an altitude of about 700 m, and the newly discovered Dongsuak spinel peridotites was enclosed in Dongsuak alkaline basalt. The Dongsuak spinel peridotites are composed of olivine, orthopyroxene, clinopyroxene, and spinel with porphyroclastic texture under the an equilibrium state. The variations of mineral major and trace compositions indicates that the Dongsuak spinel peridotites originate at depth from 66 to 88 km under an equilibrium temperature of about 960℃~1068℃. The Dongsuak spinel peridotites have been undergone about 1~3% fractional melting. The LREE-enriched characteristics indicate that the Dongsuak spinel peridotites have been undergone cryptic metasomatism by silicate melt without new minerals.

Petrological Study on the Mantle Xenolith from Songaksan, Jeju Island (제주도 송악산에 분포하는 맨틀포획암의 암석학적 연구)

  • Youngwoo Kil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.365-376
    • /
    • 2023
  • Songaksan, formed about 3800 year ago, is one of the tuff rings in the Jeju Island. Mantle xenoliths, spinel peridotites, are enclosed in the Songaksan Trachybasalt. The spinel peridotites are less than 2 cm in size and are composed of olivine, orthopyroxene, clinopyroxene, and spinel. The uniform compositions of the minerals from core to rim indicate that equilibrium was reached in the spinel peridotites before these were enclosed in the host magma. The spinel peridotites originated at depths between 55 and 60 km with equilibrium temperatures ranging from 915 to 968℃. The spinel peridotites from Songaksan reveal porphyroclastic texture with a lot of neoblast minerals. Olivines display strong kink banding, indicating that the upper mantle of Songaksan has been deformed. The spinel peridotites from Songaksan have undergone about 5~7% fractional melting, and cryptic metasomatism by an silicate melt. The period of entrainment and transport of the spinel peridotites in the host magma is about 15 days.

Preliminary Study on the Ultramafic Rocks from the Chungnam Province, Korea (충남지역에 분포하는 초염기성암의 기원규명을 위한 기초연구)

  • Wee, Soo-Meen;Choi, Seon-Gyu;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.171-180
    • /
    • 1994
  • Several ultramafic bodies and ultramafic origin talc deposits are distributed in Chungnam province near the contact zone with Ogchun fold belt They occur as discontinued belt form with northeast trending, and most of them are more or less sepentinized. Major, trace, and rare earth elements analyses were made of the ultramafics from the study area to constrain their origin and genetic relationships. Compared to the primitive mantle estimates of privious workers, the correlations defined by the studied rock samples indicate similar Ni but very lower $Al_{2}O_{3}$, CaO and $TiO_{2}$ contents. It is inferred that source material of the studied rocks might be residual mantle which had undergone a large degree of partial melting event. The REE patterns show relatively flat to enriched in LREE (chondrite normalized La/Yb and Sm/Yb ratios are 1.1-5.2 and 1.2-1.6). Several alternative explaination are possible for LREE enrichment patterns in the studied ultramafic rocks such as 1) enrichment due to late stage alteration, 2) enriched pre-melting composition, and 3) mixing of two components. Based on the result, the LREE enrichment characteristic of the studied rocks might be result from the mixture of two geochemically distinct components; one is depleted residual mantle and the other component which determine the abundances of incompatible elements and responsible for the LREE enrichment.

  • PDF

Teleseismic Travel Time Tomography for the Mantle Velocity Structure Beneath the Melanesian Region (원거리 지진 주시 토모그래피를 이용한 멜라네시아 지역의 맨틀 속도 구조 연구)

  • Jae-Hyung Lee;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • The Melanesian region in the western Pacific is dominated by complex plate tectonics, with the largest oceanic plateau, the OntongJava plateau, and a hotspot, the Caroline Islands. To better understand the complex geodynamics of the region, we estimate P- and S-velocity models and 𝛿 (VP/VS) model by using relative teleseismic travel times measured at seismometers on land and the seafloor. Our results show high-velocity anomalies in the subduction zones of the Melanesian region to a depth of about 400 km, which is thought to be subducting Solomon Sea, Bismarck, and Australian plates along plate boundaries. Along subduction zones, positive 𝛿 (VP/VS) anomalies are found, which may be caused by partial melting due to dehydration. A broad high-velocity anomaly is observed at 600 km depth below the Ontong-Java plateau, with a negative 𝛿 (VP/VS) anomaly. This is thought to be a viscous and dry remnant of the Pacific plate that subducted at 45-25 Ma, with a low volume of fluids due to dehydration for a long period in the mantle transition zone. Beneath the Caroline Islands, a strong low-velocity anomaly is obseved to a depth of 800 km and appears to be connected to the underside of the remnant Pacific plate in the mantle transition zone. This suggests that the mantle plume originating in the lower mantle has been redirected due to the interaction with the remnant Pacific plate and has reached its current location. The mantle plume also has a positive 𝛿 (VP/VS) anomaly, which is thought to be due to the influence of embedded fluids or partial melting. A high-velocity anomaly, interpreted as an effect of the thick lithosphere beneath the Ontong-Java plateau, is observed down to 300 km depth with a negative 𝛿 (VP/VS) anomaly, which likely indicate that little fluid remains in the melt residue accumulated in the lithosphere.

A Study on the Dominant Driving Force of Plate Movement presented in the High School Earth Science Textbooks (고등학교 지구과학 교과서에 제시된 판 이동의 주된 원동력에 대한 고찰)

  • Jeon, Taehwan;Seo, Ki-Weon;Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.62-77
    • /
    • 2016
  • In the early model of plate tectonics, the plate was depicted as a passive raft floating on the convecting mantle and carried away by the mantle flow. At the same time, ridge push at spreading boundaries and drag force exerted by the mantle on the base of lithosphere were described as the dominant driving forces of plate movements. However, in recent studies of plate tectonics, it is generally accepted that the primary force driving plate motion is slab pull beneath subduction zones rather than other forces driven by mantle convection. The current view asserts that the density contrast between dense oceanic lithosphere and underlying asthenosphere is the substance of slab pull. The greater density of oceanic slab allows it to sink deeper into mantle at trenches by gravitational pull, which provides a dominant driving force for plate motion. Based on this plate tectonics development, this study investigated the contents of plate tectonics in high school Earth Science textbooks and how they have been depicted for the last few decades. Results showed that the early explanation of plate movement driven by mantle convection has been consistently highlighted in almost all high school textbooks since the 5th curriculum, whereas most introductory college textbooks rectified the early theory of plate movement and introduced a newly accepted theory in revised edition. Therefore, we suggest that the latest theory of plate tectonics be included in high school textbooks so that students get updated with recent understanding of it in a timely manner.

Hydrous Minerals (Phlogopite and Amphibole) from Basaltic Rocks, Jeju Island: Evidences for Modal Metasomatism (제주도 현무암에 산출되는 함수광물(금운모와 각섬석): 모달교대작용의 증거)

  • Heo, Seo-Young;Yang, Kyoung-Hee;Jeong, Hoon-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-30
    • /
    • 2012
  • Phlogopite and kaersutite, showing distinctively different textural characteristics compared to the common phenocrysts, are observed in alkali basalt from Jeju Island. They occur as large crystals (2-10 mm) in host basalts, whereas fine-grained phlogopite and kaersutite occur in ultramafic mantle xenoliths and mafic gabbroic xenoliths, respectively, as an interstitial and microvein phases, or in corona textures (<1 mm). This textural characteristics of fine-grained grains clearly indicates secondary in origin. Phlogopite contains high $TiO_2$(4.1-6.9 wt%) and F(2.8-4.6 wt%) and relatively high mg#[=100Mg/(Mg+$Fe^t$) in mols, where $Fe^t$ is total iron](88-80), whereas kaersutite has high $TiO_2$(5.6-6.11 wt%) and much lower mg#s(68-64). Our textural observations and the geochemical character of these hydrous minerals suggest that they were unrelated to each other and mica formation happened early in the upper mantle before the mantle xenoliths had been trapped. In contrast, kaersutite formation has happened later, probably during the late stage of crystallization as intracrustal processes. The presence of phlogopite and kaersutitic amphibole is a direct evidence for K-, Ti-, F- and $H_2O$-bearing fluid/melt percolation in the lithosphere beneath Jeju Island, indicating that they are product of interaction between host rock/peridotite/fluid-melt. Thus, the upper mantle/lower crust beneath Jeju Island are metasomatized to various extents, characterized by a change in major metasomatic hydrous minerals from phlogopite to amphibole with decreasing depth.

An Analysis of High School Students' Mental Models on the Plate Boundaries (판의 경계에 대한 고등학생들의 정신모형 분석)

  • Park, Soo-Kyong
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.111-126
    • /
    • 2009
  • The purpose of this study was to derive the criterions of each type of mental models on the plate boundaries and to investigate high school students' mental models on these concepts. The 11th grade student participants were requested to draw the collisional, convergent, and divergent boundaries and were interviewed individually. The drawings and the data gathered through the interviews were analyzed qualitatively. The mental models on the plate boundaries were classified as 'naive model', 'unstable model', 'causal model', and 'conceptual model'. The criterions for analyzing the mental models were the differentiations of the lithospheric plates and the mantle, the explanations of the motion of the plates and lower mantle, the demonstrations of topographical features of the plate boundaries and the causal relationships between the mantle convection and the topographical features. The findings revealed that the students holding 'the naive model' and 'the unstable model' were unable to relate the mantle convection and the three boundaries. In contrast, the students holding 'the causal model' and 'the conceptual model' were able to explain that the mantle convection causes the three boundaries. Also, the types of epistemological belief were different depending on their mental models. Students holding the naive model and the unstable model tended to rely upon the external authorities.

Origins of Clinopyroxenes in Alkaline Basalts from Jeju Island (제주도 알칼리 현무암에 산출되는 단사휘석의 기원)

  • Yang Kyounghee;Hwang Byoung-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • Three types of clinopyroxenes in alkali basaltic rocks from Jeju Island can be identified on the basis of geochemical and textural data. Type Ⅰ is Cr-rich diopside in spinel peridotites from the upper mantle. Type Ⅱ is augite in fine-grained pyroxenites which are possibly either magmatic vein or metamorphic segregations owing to anatexis of the upper mantle. The augite of Type Ⅱ contains high Ca and Mg and relatively low Ti. Type Ⅲ is thought to be either cumulates or cognate phenocrysts and can be subdivided into Ⅲa, Ⅲb, and Ⅲc based on their occurrence mode. Clinopyroxenes of Type Ⅰ have the highest Mg# and Si and the lowest Ti, whereas those of Type Ⅲhave lower Mg#와 Si and higher Ti. These geochemical characteristics indicate that (Ti+Al/sup Ⅵ/)/Si and Al/sup Ⅵ//Al/sup Ⅵ/ increase from Type Ⅰ to Type Ⅲ. It is possibly interpreted that Type Ⅰ is of the highest pressure origin and Type Ⅲ of the lowest. Fractionation of high-pressure clinopyroxenes would result in evolved undersaturated alkali-enriched liquids, probably producing the alkali-enriched host basaltic rocks in Jeju Island.

Textural Implications of Fine-Grained Peridotite Xenoliths in Basaltic Rocks from Jeju Island (제주도 현무암에 포획된 세립질 맨틀 페리도타이트 포획암의 조직적 특성)

  • Yang, Kyoung-Hee;Nam, Bok-Hyun;Kim, Jin-Seop;Szabo, Csaba
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Fine-grained peridotite xenoliths are rarely trapped in the basaltic rocks from the southeastern part of Jeju Island. Based on textural characteristics of the constituent phases showing uniform-sized, fine-grained tabular to mosaic grains with rare porphyroclastic relics, the studied samples can be defined as fine-grained, foliated porphyroclastic peridotites (FPP). Almost no significant difference among the FPPs in textures and major element compositions implies that the FPPs were derived from a structural domain, experiencing similar deformation events and deformation patterns. Moreover, the bimodal distribution with kink-banded porphyroclasts ($2{\sim}3mm$) and stain-free neoblasts ($200{\sim}300{\mu}m$), straight to gently curved grain boundaries with triple junctions, interstitial melt pockets, and microstructures for migrating grain boundary suggest that the studied samples went through dynamic recrystallization (${\pm}$ static recrystallization) in the presence of melt/fluid movement along foliation planes. No notable difference between the FPP and common protogranular xenoliths in major element compositions and geochemical evolution also implies that the FPP and protogranular xenoliths were from a similar horizon. Thus, the textural and geochemical characteristics of the FPPs reflects deformation events occurred at a localized and narrow zone within the lithospheric mantle beneath the Jeju Island. Although further detailed studies are necessary to define deformation events, the most possible process which could trigger deformation in the FPP in the rigid upper mantle was the ascending basaltic magma forming high-stress deformation zones. The suggested high-stress deformation zones in the lithosphere beneath the Jeju Island may be produced by paleo-faulting events related to the ascent of basalt magma before Jeju Island was formed.

Petorshemical Study on the Mantle Xwnoliths in alkli basalts from S. Korea: P-T Regime of Upper Mantle (남한의 알카리 현무암에 분포하는 맨틀포획암의 암석화학적 연구: 상부맨틀포획암의 암석화학적 연구: 상부맨틀의 온도 및 압력 추정)

  • 이한영
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.104-123
    • /
    • 1995
  • Mantle xenoliths in alkali basalt from Boun, Gansung area, and Baegryung island in S. Korea are spinel lherzolites composed of olivine, orthopyroxene, clinopyroxene, and spinel. The xenoliths generally show triple junctions among grams, kink-banding in olivine and pyroxenes, and protogranular and eqigranular textures having m orlentatron of specific direction. Anhedral brown spinels are disseminated in the intergranular spaces of minerals. Mineral compositions are very homogeneous without compositional zonation from rim to core in grains regardless different locahties. Olivine shows Fo. component of 89.0-90.2 and low CaO of 0.03-0.12wt%, orthopyroxene is enstatite with En component of 89.0 - 90.0 and $Al_2O_3$ of 4-5wt%, and clinopyroxene is diopside having En. component of 47.2-49.1 and $Al_2O_3$ of 7.42-7.64wt% from Boun and 4.70-4.91wt% from Baegryung showing local variation. Spinel shows the distinctive negative trend with increasing of A1 and decreasing of Cr, and Mg value and Cr number are 75.1-81.9 and 8.5-12.6, respectively. To estlmate T and P for these mantle xenoliths pyroxene-geothermometers (Wood and Banno, 1973; Wells, 1977; Mercier, 1980; Sachtleben and Seck, 1981; Bertrand and Mercier, 1985; Brey and Kohler, 1990) and Al-solubility geobarometer (Mercier, 1980; Lane and Ganguly, 1980) are used. Temperatures of Mercier (1980) and Sachtleben and Seck (1981) are compatible and equilibrium temperatures of xenoliths, average value of these two, aiie from $970^{\circ}C$ to $1020^{\circ}C$, and equihbrium pressures derived from Mercier (1980) are in the range of 12-19 Kb (42-63 Km). These temperatures and pressures seem to be reasonble wlth the consideration of Al-isopleths in MAS system (Lane and Ganguly, 1980) and Fe effect on Al-solubility in orthopyroxene (Lee and Ganguly, 1988). Equllibrium of temperatures and pressures of xenoliths in P-T space belong to ocenanic geothem among the Mercier's mantle geotherms (1980) and are completely different from continental geotherms of S. Africa (Lesotho) and S. India having different geologcal ages. anera1 compositions of spmel-lherzohtes in S. Korea and eastern China are primitwe and paleogeothems of both are very s~mllar, but degrees of depletion of upper mantle could be locally different from each other since eastern China has various depleted xenoliths due to different degrees of partial melting.

  • PDF