KIPS Transactions on Software and Data Engineering
/
v.6
no.11
/
pp.507-520
/
2017
The set-based similar sequence matching method measures similarity not for an individual data item but for a set grouping multiple data items. In the method, the similarity of two sets is represented as the size of intersection between them. However, there is a critical performances issue for the method in twofold: 1) calculating intersection size is a time consuming process, and 2) the number of set pairs that should be calculated the intersection size is quite large. In this paper, we propose an index-based search method for improving performance of set-based similar sequence matching in order to solve these performance issues. Our method consists of two parts. In the first part, we convert the set similarity problem into the intersection size comparison problem, and then, provide an index structure that accelerates the intersection size calculation. Second, we propose an efficient set-based similar sequence matching method which exploits the proposed index structure. Through experiments, we show that the proposed method reduces the execution time by 30 to 50 times then the existing methods. We also show that the proposed method has scalability since the performance gap becomes larger as the number of data sequences increases.
최근 시계열 데이터베이스 기반의 다양한 응용 분야에서 서브시퀀스 매칭(subsequence matching)연구가 활발히 진행되고 있다. FRM과 DualMatch은 효과적인 서브시퀀스 매칭을 위해 처음 제안된 해결책이다. 이후 이들을 일반화한 GeneralMatch가 제안되었으며, 최근에는 GeneralMatch의 이원적 접근법인 DualGMatch가 제안되었다. 본 논문에서는 GeneralMatch와 DualGMath를 비교 분석 하고자 한다. 이를 위해, 먼저 윈도우 구성 관점에서 GeneralMatch와 DualGMatch를 평가한다. 다음으로, 두 해결책을 최대 윈도우 크기 효과와 인덱스 저장 효율 관점에서 이론적으로 비교 분석한다. 마지막으로, 실제 시계열 데이터를 활용하여 GeneralMatch와 DualGMatch의 인덱스 페이지 접근 횟수를 비교한다. 분석 결과, GeneralMatch가 윈도우 크기 효과와 인덱스 저장 효율 측면에서 DualGMatch보다 우수한 것으로 나타났다.
Sequence matching in time-series databases is an operation that finds the data sequences whose changing patterns are similar to that of a query sequence. Typically, sequence matching hires a multi-dimensional index for its efficient processing. In order to alleviate the dimensionality curse problem of the multi-dimensional index in high-dimensional cases, the previous methods for sequence matching apply the Discrete Fourier Transform(DFT) to data sequences, and take only the first two or three DFT coefficients as organizing attributes of the multi-dimensional index. This paper first points out the problems in such simple methods taking the firs two or three coefficients, and proposes a novel solution to construct the optimal multi -dimensional index. The proposed method analyzes the characteristics of a target database, and identifies the organizing attributes having the best discrimination power based on the analysis. It also determines the optimal number of organizing attributes for efficient sequence matching by using a cost model. To show the effectiveness of the proposed method, we perform a series of experiments. The results show that the Proposed method outperforms the previous ones significantly.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.181-183
/
2001
본 논문에서는 대용량 시퀸스 데이터베이스에서 타임 워핑을 지원하는 인텍스 기반 서브시퀸스 매칭에 관하여 논의한다. 타임 워핑은 시퀸스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀸스들을 찾을 수 있도록 해 준다. 최근의 연구에서 타임 워핑을 지원하는 효과적인 전체 매칭 기법이 제안된 바 있다. 본 연구에서는 이 기존의 연구에 슬라이딩 윈도우 개념을 결합하는 새로운 기법을 제안한다. 인덱싱을 위하여, 각 슬라이딩 윈도우와 대응되는 서브시퀸스로부터 특징 벡터를 추출하고, 이 특징 벡터를 인덱싱 애트리뷰트로 사용하는 다차원 인덱스를 구성한다. 질의 처리를 위하여, 조건을 만족하는 질의 접두어들에 대한 특징 벡터들을 이용하여 인덱스 검색을 수행한다. 제안된 기법은 대용량의 데이터베이스에서도 효과적인 서브시퀸스 매칭을 지원한다. 본 연구에서는 제안된 기법이 착오 기각을 유발시키지 않음을 증명하고, 실험을 통하여 제안된 기법의 우수성을 규명한다.
Proceedings of the Korean Information Science Society Conference
/
1999.10a
/
pp.334-336
/
1999
본 논문에서는 시계열 데이터베이스에서 임의 계수의 이동평균 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 응용분야와 분석하려고 하는 시계열 데이터의 특성에 따라 잡음의 영향을 줄이는 정도와 경향을 파악하는 주기가 달라지므로 이동평균 계수의 선택도 달라진다. 본 논문에서는 하나의 이동평균 계수에 대해서 생성한 인덱스만을 이용하여 인덱스가 생성되어 있지 않은 계수에 대해서도 탐색을 수행하는 방법을 제안한다. 이때, 제안된 탐색 기법이 질의 결과로 반환되어야 할 서브시퀀스를 모두 찾아내지 못하는 착오 기각이 발생하지 않음을 증명한다. 실험 결과, 모든 이동평균 계수에 대해 인덱스가 생성되어 있는 경우와 비교하여 탐색 성능의 저하는 42%이내였으며, 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 초대 2.7배 우수하였다.
Proceedings of the Korean Information Science Society Conference
/
1999.10a
/
pp.222-224
/
1999
지문은 가장 효율적인 사용자 인증방법으로 이용되어져 왔다. 또한 컴퓨터의 발달과 더불어 자동지문 인식은 더욱 많이 연구되어졌고, 또한 급속도로 발전하였다. 이런 대부분의 연구들은 지문 인식에서 특징점 추출 및 정합부분에 관한 연구가 주류를 이루고 있다. 그런, 대단위 데이터베이스 검색 향상을 위한 방법의 연구는 아직도 미진한 실정이다. 본 연구는 기존의 지문 데이터베이스에 공간 인덱스를 추가시켜 지문을 효과적으로 추출하는 방법을 제시한다. 이 방법으로, 데이터베이스의 지문을 다차원공간 인덱스에 저장시킨다. 그리고, 지문을 검색을 할 때에는, 다차원공간상에서 미지 지문과 유사한 지문들을 추출하여, 후보지문을 만든다. 그리고, 매칭 작업은 이 후보지문들하고만 매칭 하여도 전체를 한 것과 같은 효과를 얻을 수 있다. 이러한 방법으로, 전체 지문 검색 시간을 단축시킬 수 있다.
Kim, Bum-Soo;Kim, Sang-Pil;Moon, Yang-Sae;Choi, Mi-Jung
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.28-30
/
2012
본 논문에서는 시계열 매칭 기술을 활용한 스케일링-불변 윤곽선 이미지 매칭 시스템을 설계 및 구현한다. 윤곽선 이미지를 시계열로 나타낼 경우, 스케일된 유사 이미지들을 찾는데 거리 계산이 용이해지고, 인덱스 사용이 가능하여 대용량 데이터베이스 대상의 빠른 검색이 가능해지게 된다. 이를 위해, 기존연구 내용을 기반으로 사용자의 편의를 위해 GUI 환경의 클라이언트-서버 시스템으로 설계 및 구현한다. 먼저, 클라이언트에서는 사용자의 질의 이미지를 시계열로 변환하여 가로 및 세로의 스케일링 팩터구간과 허용치 ${\varepsilon}$과 함께 서버에 전달한다. 서버에서는 클라이언트에서 전달한 값들을 이용하여 범위 질의를 구성하여 이미 구축해놓은 이미지 시계열 데이터베이스의 인덱스를 통해 유사 이미지들을 찾은 후 그 결과 이미지들을 클라이언트로 전달한다. 구현 결과, 스케일링-불변 윤곽선 이미지 매칭은 직관적이고 정확한 매칭을 수행하는 것으로 나타났다.
Park, Sang-Hyeon;Kim, Sang-Uk;Jo, Jun-Seo;Lee, Heon-Gil
The KIPS Transactions:PartD
/
v.9D
no.2
/
pp.173-184
/
2002
This paper discuss an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, Kim et al. suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multidimensional index using a feature vector as indexing attributes. For query processing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verify the superiority of our approach, we perform extensive experiments. The results reveal that our approach achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.
Subsequence matching, which consists of index searching and post-processing steps, is an operation that finds those subsequences whose changing patterns are similar to that of a given query sequence from a time-series database. This paper discusses optimization of post-processing for subsequence matching. The common problem occurred in post-processing of previous methods is to compare the candidate subsequence with the query sequence for discarding false alarms whenever each candidate subsequence appears during index searching. This makes a sequence containing candidate subsequences to be accessed multiple times from disk, and also have a candidate subsequence to be compared with the query sequence multiple times. These redundancies cause the performance of subsequence matching to degrade seriously. In this paper, we propose a new optimal method for resolving the problem. The proposed method stores ail the candidate subsequences returned by index searching into a binary search tree, and performs post-processing in a batch fashion after finishing the index searching. By this method, we are able to completely eliminate the redundancies mentioned above. For verifying the performance improvement effect of the proposed method, we perform extensive experiments using a real-life stock data set. The results reveal that the proposed method achieves 55 times to 156 times speedup over the previous methods.
KIPS Transactions on Software and Data Engineering
/
v.4
no.9
/
pp.377-384
/
2015
In this paper we propose a visualization tool for distortion-free time-series matching. Supporting distortion-free is a very important factor in time-series matching to get more accurate matching results. In this paper, we visualize the result of time-series matching, which removes various time-series distortions such as noise, offset translation, amplitude scaling, and linear trend by using moving average, normalization, linear detrending transformations, respectively. The proposed visualization tool works as a client-server model. The client sends a user-selected time-series, of which distortions are removed, to the server and visualizes the matching results. The server efficiently performs the distortion-free time-series matching on the multi-dimensional R*-tree index. By visualizing the matching result as five different charts, we can more easily and more intuitively understand the matching result.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.