• Title/Summary/Keyword: 매칭인덱스

Search Result 63, Processing Time 0.021 seconds

An Index-Based Search Method for Performance Improvement of Set-Based Similar Sequence Matching (집합 유사 시퀀스 매칭의 성능 향상을 위한 인덱스 기반 검색 방법)

  • Lee, Juwon;Lim, Hyo-Sang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.507-520
    • /
    • 2017
  • The set-based similar sequence matching method measures similarity not for an individual data item but for a set grouping multiple data items. In the method, the similarity of two sets is represented as the size of intersection between them. However, there is a critical performances issue for the method in twofold: 1) calculating intersection size is a time consuming process, and 2) the number of set pairs that should be calculated the intersection size is quite large. In this paper, we propose an index-based search method for improving performance of set-based similar sequence matching in order to solve these performance issues. Our method consists of two parts. In the first part, we convert the set similarity problem into the intersection size comparison problem, and then, provide an index structure that accelerates the intersection size calculation. Second, we propose an efficient set-based similar sequence matching method which exploits the proposed index structure. Through experiments, we show that the proposed method reduces the execution time by 30 to 50 times then the existing methods. We also show that the proposed method has scalability since the performance gap becomes larger as the number of data sequences increases.

A Comparative Analysis of GeneralMatch and DualGMatch in Time-Series Subsequence Matching (시계열 서브시퀀스 매칭에서 GeneralMatch와 DualGmatch의 비교 분석)

  • Lee, Sanghun;Moon, Yang-Sae
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.751-754
    • /
    • 2015
  • 최근 시계열 데이터베이스 기반의 다양한 응용 분야에서 서브시퀀스 매칭(subsequence matching)연구가 활발히 진행되고 있다. FRM과 DualMatch은 효과적인 서브시퀀스 매칭을 위해 처음 제안된 해결책이다. 이후 이들을 일반화한 GeneralMatch가 제안되었으며, 최근에는 GeneralMatch의 이원적 접근법인 DualGMatch가 제안되었다. 본 논문에서는 GeneralMatch와 DualGMath를 비교 분석 하고자 한다. 이를 위해, 먼저 윈도우 구성 관점에서 GeneralMatch와 DualGMatch를 평가한다. 다음으로, 두 해결책을 최대 윈도우 크기 효과와 인덱스 저장 효율 관점에서 이론적으로 비교 분석한다. 마지막으로, 실제 시계열 데이터를 활용하여 GeneralMatch와 DualGMatch의 인덱스 페이지 접근 횟수를 비교한다. 분석 결과, GeneralMatch가 윈도우 크기 효과와 인덱스 저장 효율 측면에서 DualGMatch보다 우수한 것으로 나타났다.

Physical Database Design for DFT-Based Multidimensional Indexes in Time-Series Databases (시계열 데이터베이스에서 DFT-기반 다차원 인덱스를 위한 물리적 데이터베이스 설계)

  • Kim, Sang-Wook;Kim, Jin-Ho;Han, Byung-ll
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1505-1514
    • /
    • 2004
  • Sequence matching in time-series databases is an operation that finds the data sequences whose changing patterns are similar to that of a query sequence. Typically, sequence matching hires a multi-dimensional index for its efficient processing. In order to alleviate the dimensionality curse problem of the multi-dimensional index in high-dimensional cases, the previous methods for sequence matching apply the Discrete Fourier Transform(DFT) to data sequences, and take only the first two or three DFT coefficients as organizing attributes of the multi-dimensional index. This paper first points out the problems in such simple methods taking the firs two or three coefficients, and proposes a novel solution to construct the optimal multi -dimensional index. The proposed method analyzes the characteristics of a target database, and identifies the organizing attributes having the best discrimination power based on the analysis. It also determines the optimal number of organizing attributes for efficient sequence matching by using a cost model. To show the effectiveness of the proposed method, we perform a series of experiments. The results show that the Proposed method outperforms the previous ones significantly.

  • PDF

Effective Subsequence Matching Supporting Time Warping in Sequence Databases (시퀸스 데이터베이스를 위한 타임 워핑을 지원하는 효과적인 서브시퀸스 매칭)

  • 박상현;김상옥;조준서
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.181-183
    • /
    • 2001
  • 본 논문에서는 대용량 시퀸스 데이터베이스에서 타임 워핑을 지원하는 인텍스 기반 서브시퀸스 매칭에 관하여 논의한다. 타임 워핑은 시퀸스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀸스들을 찾을 수 있도록 해 준다. 최근의 연구에서 타임 워핑을 지원하는 효과적인 전체 매칭 기법이 제안된 바 있다. 본 연구에서는 이 기존의 연구에 슬라이딩 윈도우 개념을 결합하는 새로운 기법을 제안한다. 인덱싱을 위하여, 각 슬라이딩 윈도우와 대응되는 서브시퀸스로부터 특징 벡터를 추출하고, 이 특징 벡터를 인덱싱 애트리뷰트로 사용하는 다차원 인덱스를 구성한다. 질의 처리를 위하여, 조건을 만족하는 질의 접두어들에 대한 특징 벡터들을 이용하여 인덱스 검색을 수행한다. 제안된 기법은 대용량의 데이터베이스에서도 효과적인 서브시퀸스 매칭을 지원한다. 본 연구에서는 제안된 기법이 착오 기각을 유발시키지 않음을 증명하고, 실험을 통하여 제안된 기법의 우수성을 규명한다.

  • PDF

A Subsequence Matching Algorithm Supporting Moving Average Transformation of Arbitrary Order in Time-Series Databases (시계열 데이터베이스에서 임의 계수의 이동평균 변환을 지원하는 서브시퀀스 매칭 알고리즘)

  • 노웅기;김상욱;황규영;심규석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.334-336
    • /
    • 1999
  • 본 논문에서는 시계열 데이터베이스에서 임의 계수의 이동평균 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 응용분야와 분석하려고 하는 시계열 데이터의 특성에 따라 잡음의 영향을 줄이는 정도와 경향을 파악하는 주기가 달라지므로 이동평균 계수의 선택도 달라진다. 본 논문에서는 하나의 이동평균 계수에 대해서 생성한 인덱스만을 이용하여 인덱스가 생성되어 있지 않은 계수에 대해서도 탐색을 수행하는 방법을 제안한다. 이때, 제안된 탐색 기법이 질의 결과로 반환되어야 할 서브시퀀스를 모두 찾아내지 못하는 착오 기각이 발생하지 않음을 증명한다. 실험 결과, 모든 이동평균 계수에 대해 인덱스가 생성되어 있는 경우와 비교하여 탐색 성능의 저하는 42%이내였으며, 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 초대 2.7배 우수하였다.

  • PDF

Multidimensional Index for Fingerprint Identification (지문인식을 위한 다차원공간 인덱스의 설계)

  • 김갑영;심현보;박영배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.222-224
    • /
    • 1999
  • 지문은 가장 효율적인 사용자 인증방법으로 이용되어져 왔다. 또한 컴퓨터의 발달과 더불어 자동지문 인식은 더욱 많이 연구되어졌고, 또한 급속도로 발전하였다. 이런 대부분의 연구들은 지문 인식에서 특징점 추출 및 정합부분에 관한 연구가 주류를 이루고 있다. 그런, 대단위 데이터베이스 검색 향상을 위한 방법의 연구는 아직도 미진한 실정이다. 본 연구는 기존의 지문 데이터베이스에 공간 인덱스를 추가시켜 지문을 효과적으로 추출하는 방법을 제시한다. 이 방법으로, 데이터베이스의 지문을 다차원공간 인덱스에 저장시킨다. 그리고, 지문을 검색을 할 때에는, 다차원공간상에서 미지 지문과 유사한 지문들을 추출하여, 후보지문을 만든다. 그리고, 매칭 작업은 이 후보지문들하고만 매칭 하여도 전체를 한 것과 같은 효과를 얻을 수 있다. 이러한 방법으로, 전체 지문 검색 시간을 단축시킬 수 있다.

  • PDF

Design and Implementation of Scaling-Invariant Boundary Image Matching System (스케일링-불변 윤곽선 이미지 매칭 시스템의 설계 및 구현)

  • Kim, Bum-Soo;Kim, Sang-Pil;Moon, Yang-Sae;Choi, Mi-Jung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.28-30
    • /
    • 2012
  • 본 논문에서는 시계열 매칭 기술을 활용한 스케일링-불변 윤곽선 이미지 매칭 시스템을 설계 및 구현한다. 윤곽선 이미지를 시계열로 나타낼 경우, 스케일된 유사 이미지들을 찾는데 거리 계산이 용이해지고, 인덱스 사용이 가능하여 대용량 데이터베이스 대상의 빠른 검색이 가능해지게 된다. 이를 위해, 기존연구 내용을 기반으로 사용자의 편의를 위해 GUI 환경의 클라이언트-서버 시스템으로 설계 및 구현한다. 먼저, 클라이언트에서는 사용자의 질의 이미지를 시계열로 변환하여 가로 및 세로의 스케일링 팩터구간과 허용치 ${\varepsilon}$과 함께 서버에 전달한다. 서버에서는 클라이언트에서 전달한 값들을 이용하여 범위 질의를 구성하여 이미 구축해놓은 이미지 시계열 데이터베이스의 인덱스를 통해 유사 이미지들을 찾은 후 그 결과 이미지들을 클라이언트로 전달한다. 구현 결과, 스케일링-불변 윤곽선 이미지 매칭은 직관적이고 정확한 매칭을 수행하는 것으로 나타났다.

An Index-Based Approach for Subsequence Matching Under Time Warping in Sequence Databases (시퀀스 데이터베이스에서 타임 워핑을 지원하는 효과적인 인덱스 기반 서브시퀀스 매칭)

  • Park, Sang-Hyeon;Kim, Sang-Uk;Jo, Jun-Seo;Lee, Heon-Gil
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.173-184
    • /
    • 2002
  • This paper discuss an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, Kim et al. suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multidimensional index using a feature vector as indexing attributes. For query processing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verify the superiority of our approach, we perform extensive experiments. The results reveal that our approach achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.

Optimization of Post-Processing for Subsequence Matching in Time-Series Databases (시계열 데이터베이스에서 서브시퀀스 매칭을 위한 후처리 과정의 최적화)

  • Kim, Sang-Uk
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.555-560
    • /
    • 2002
  • Subsequence matching, which consists of index searching and post-processing steps, is an operation that finds those subsequences whose changing patterns are similar to that of a given query sequence from a time-series database. This paper discusses optimization of post-processing for subsequence matching. The common problem occurred in post-processing of previous methods is to compare the candidate subsequence with the query sequence for discarding false alarms whenever each candidate subsequence appears during index searching. This makes a sequence containing candidate subsequences to be accessed multiple times from disk, and also have a candidate subsequence to be compared with the query sequence multiple times. These redundancies cause the performance of subsequence matching to degrade seriously. In this paper, we propose a new optimal method for resolving the problem. The proposed method stores ail the candidate subsequences returned by index searching into a binary search tree, and performs post-processing in a batch fashion after finishing the index searching. By this method, we are able to completely eliminate the redundancies mentioned above. For verifying the performance improvement effect of the proposed method, we perform extensive experiments using a real-life stock data set. The results reveal that the proposed method achieves 55 times to 156 times speedup over the previous methods.

Visualization Tool of Distortion-Free Time-Series Matching (왜곡 제거 시계열 매칭의 시각화 도구)

  • Moon, Seongwoo;Lee, Sanghun;Kim, Bum-Soo;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.377-384
    • /
    • 2015
  • In this paper we propose a visualization tool for distortion-free time-series matching. Supporting distortion-free is a very important factor in time-series matching to get more accurate matching results. In this paper, we visualize the result of time-series matching, which removes various time-series distortions such as noise, offset translation, amplitude scaling, and linear trend by using moving average, normalization, linear detrending transformations, respectively. The proposed visualization tool works as a client-server model. The client sends a user-selected time-series, of which distortions are removed, to the server and visualizes the matching results. The server efficiently performs the distortion-free time-series matching on the multi-dimensional R*-tree index. By visualizing the matching result as five different charts, we can more easily and more intuitively understand the matching result.