• Title/Summary/Keyword: 매연생성

Search Result 72, Processing Time 0.023 seconds

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DI Diesel Engine - Using Rape Oil - (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향 - 유채유를 중심으로 -)

  • Lim, Jae-Keun;Choi, Soon-Youl;Kim, Suk-Joon;Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • We have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel without change of engine structure in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine. Especially this biodisel was produced from rape oil at our laboratory by ourselves. This study showed that specific fuel consumption and NOx emission were slightly increased, on the other hand CO emission and Soot were tolerably decreased more in the case of biodiesel blends than neat diesel oil.

  • PDF

Construction of laser induced grating spectrometer and measurement of thermal grating in $C_3H_8$ flame (레이저 유도 격자 분광장치 제작 및 $C_3H_8$화염에서 열 격자 측정)

  • 박철웅;한재원;이중재;이영우;고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.446-451
    • /
    • 2001
  • We made a laser induced grating spectrometer(LIGS) and measured the thermal grating signal generated in a $C_3$ $H_{8}$ flame. The thermal grating was formed in the C7Ha flame with two second-harmonic Nd:YAG pulse laser beams, and an LIGS signal was generated by Bragg scattering of a probe laser beam A $r^+.laser(488 nm). We found the modulation period of the signal depends linearly on the spacing of the grating set in the flame. We determined flame temperature by fitting the modulated signal and soot concentration with signal strength. Using this technique, we also obtained temperature profile and soot-particle distribution in a $C_3$ $H_{8}$ flame .e .

  • PDF

A Study on Fine Dust Modeling for Air Quality Prediction (미세먼지 확산 모델링을 이용한 대기질 예측 시스템에 대한 연구)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1136-1140
    • /
    • 2020
  • As air pollution caused by fine dust becomes serious, interest in the spread of fine dust and prediction of air quality is increasing. The causes of fine dust are very diverse, and some fine dust naturally occurs through forest fires and yellow dust, but most of them are known to be caused by air pollutants from burning fossil fuels such as petroleum and coal or from automobile exhaust gas. In this paper, the CALPUFF model recommended by the US EPA is used, and CALPUFF diffusion modeling is performed by generating a wind field through the CALMET model as a meteorological preprocessing program that generates a three-dimensional wind field, which is a meteorological element required by CALPUFF. Through this, we propose a fine dust diffusion modeling and air quality prediction system that reflects complex topography.

Soot Formation Characteristics of Concentric Ethylene/Propane Co-flow Diffusion Flames (층상구조 에틸렌/프로판 동축류화염의 매연 생성 특성)

  • Lee, Won-Nam;Koo, Bon-Seung
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.27-34
    • /
    • 2001
  • The soot formation characteristics have been studied experimentally in concentric co-flow ethylene/propane diffusion flames. Comparing to the homogeneously mixed propane/ethylene case, the increase of soot formation is observed when propane is supplied through the outer nozzle, while the decrease is observed when propane is supplied through the inner nozzle. The reaction path of PAHs formed from the pyrolysis process of propane is likely to be responsible to the observed difference. When propane is supplied through the outer nozzle, PAHs formed during the combustion process are easy to be exposed to the oxidization environment; however, when propane is supplied through the inner nozzle, PAHs are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is affected not only by the composition of mixture but also by the way of mixing.

  • PDF

Modeling for Soot Formation Coupled with Detailed Chemistry in Laminar Pressurized Non-premixed Flames (층류 고압 비예혼합 화염에서 상세화학반응과 결합된 매연입자 생성 모델링)

  • Kim, Taehoon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.139-140
    • /
    • 2012
  • In laminar non-premixed flame situation, the flamelet model is not suitable for simulating slow processor like soot and radiation. Thus in this study, we overcome this limitation by using the transient flamelet model. Also, for soot formation on laminar non-premixed flame, transient flamelet coupled with two-equation soot model has been adopted due to its inherent advantages in terms of accuracy and availability. Based on numerical results, the detailed discussion has been made for the precise structure and soot formation processes in the pressurized methane air flames.

  • PDF

Unsteady Flamelet Modeling for Flame Structure and Soot Formation of Lanimar Non-premixed CH4/Air Flame (비정상 화염편 모델을 이용한 대기압 층류 비예혼합 CH4/Air 화염장의 매연입자 생성 특성 및 화염구조 해석)

  • Kim, Taehoon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.137-138
    • /
    • 2012
  • The two-equation soot model based on the transient laminar flamelet model is implemented for soot formation of laminar non-premixed $CH_4/Air$ flame with detailed chemical reaction mechanism and complex thermodynamic properties. The soot model represents nucleation, growth and oxidation with gas-phase chemistry. This represented unsteady flamelet soot model has been tested and compared using well verified reference calculation result obtained solving the Full Transport Equations method.

  • PDF

Numerical Studies on Soot Formation Characteristics of Turbulent Non-premixed and Partially Premixed Flames (난류 비예혼합 및 부분예혼합 화염장에서 매연입자의 생성특성 해석)

  • Kim, Taehoon;Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.141-143
    • /
    • 2012
  • The present study is aiming at numerically analyze the soot formation processes coupled with gas reaction mechanism in turbulent non-premixed and partially premixed flames. In order to realistically represent turbulence-chemistry interactions with detailed chemical kinetics and soot formation behaviour related to the turbulent non-premixed and partially premixed flames, the transient flamelet[1] and flamelet based level-set approach[2] are coupled with soot formation based on the two equation model [3] and DQMOM (Direct Quadrature Method of Moment)[4].

  • PDF

Combustion and Emission Characteristics of Diesel Spray in High-Pressure Environment (고압상태에서의 디젤연료분무의 연소 및 매연가스배출 특성)

  • Kwon, Y.D.;Kim, Y.M.;Kim, S.W.;Park, S.B.
    • Journal of ILASS-Korea
    • /
    • v.2 no.1
    • /
    • pp.18-28
    • /
    • 1997
  • The present study is mainly aiming at numerically analyzing the combustion and emission characteristics of the diesel spray in a high-pressure environment. Computations are peformed for the peak chamber pressure with range from 4.08 MPa to 162 MPa. Numerical results indicate that the pressure increase in combustion chamber significantly influences the mechanism for droplet dynamics and mixing characteristics, spray penetration autoignition, flame lift-on height and the propagation or fuel vapor and flame. By increasing the ratio or the ambient density to injected liquid density, the fuel-air mixing rates and the burning rates increase and the $NO_x/soot$ emission level decreases.

  • PDF

Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet (분위기 조건이 Decane 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.211-215
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet soot generation of decane fuel. To achieve this, this paper presents the experimental results on the decane droplet combustion conducted under various ambient pressure($P_{amb}$), and oxygen concentration($O_2$) conditions. At the same time, the experimental study was conducted in terms of soot volume fraction($f_v$) and its maximum value. Also, visualization of single fuel droplet was conducted by high resolution CCD camera and ambient pressure($P_{amb}$) and oxygen concentration($O_2$) was changed by control system. It was revealed that higher ambient pressure($P_{amb}$), and oxygen concentration($O_2$) enhanced the soot generation and improved the maximum soot volume fraction( $f_v$).

Soot Formation and Oxidation in Air-Diluted Propane Diffusion Flames under Elevated Pressures (압력조건에서 공기로 희석된 프로판 확산화염의 매연 생성과 산화 특성)

  • Bae, Seungman;Nam, Younwoo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.267-268
    • /
    • 2012
  • Soot formation and oxidation characteristics of air-diluted propane diffusion flames have been experimentally investigated under the elevated pressure conditions. PAH concentrations showed more pressure sensitive behavior comparing to soot volume fractions. The flame/soot temperatures in soot oxidation region were obtained using the MOLLIP technique. Under the complete soot oxidation environment, the flame/soot temperature is increased with pressure. The increased temperature could accelerate the soot oxidation process and then exothermic oxidation reaction, in turn, could further raise the flame/soot temperature, which would result in the enhancement of soot oxidation process.

  • PDF