• Title/Summary/Keyword: 매스콘크리트 수화열조정공법

Search Result 6, Processing Time 0.017 seconds

A Method on the Control of Hydration Heat of Mass Concrete Considering Difference of Setting Time (응결 시간차를 활용한 매스 콘크리트의 수화열 조정 공법)

  • 심보길;윤치환;오선교;최주석;한천구
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • 종전의 경우 건축물의 기초 구조는 직접 기초 및 말뚝 기초 등이 많이 활용되었으나 최근에는 말뚝 기초의 경우 소음, 진동 등의 환경 문제가 중요시됨에 따라 대부분 매트 기초로 시공하는 경우가 많아졌다. 따라서, 기초 부분의 매트 콘크리트 시공은 환경 문제를 해결하고 건물의 하부구조를 안전하게 지탱하게 하는 역할은 만족되었지만. 두께가 80cm를 넘어 매스 콘크리트로 되는 경우가 많아 수화열에 의한 균열 문제 등은 콘크리트의 품질 확보에 있어 새롭게 해결해야만 하는 중요한 과제로 등장하고 있다.(중략)

Mock-up Test of Improving Super Retarding Concrete to Control of Hydration Heat Crack of Foundation Mat Mass Concrete (기초매트 매스콘크리트의 수화열 균열제어로서 초지연콘크리트 활용에 관한 Mock-up 실험)

  • Lee, Jae-Sam;Bae, Yeoun-Ki;Noh, Sang-Kyun;Kim, Suk-Il;Chung, Sung-Jin;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.777-780
    • /
    • 2008
  • According to the recent tendency that the buildings in the downtown are gradually Manhattanized, the very thick massive concrete is selected as the foundation of architectures. By the way, because this mass concrete cannot be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred, which are pointed out as the problems. Thus, this study performed Mock-up test to apply the hydration heat controlling method of massive concrete for horizontal partition pouring construction to the building sites for the purpose of securing the stability on the cracks by the internal force from the difference of hydration exothermic period on the upper layer and the lower layer of massive concrete and checked the efficiency. As the results of test, in case of setting time difference method by super retarder with 2 layers and 4 layers, the effect that temperature gaps between upper part and lower part were lowered and the possibility of crack occurrence was decreased as the peak time of the heat of hydration became delayed to the latter term could be confirmed.

  • PDF

A Method on the Control of Hydration Heat of Mass Concrete Considering the Difference of Setting Time (응결시간차를 활용한 매스콘크리트의 수화열 조정공법)

  • 심보길;윤치환;한민철;김기철;오선교;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.379-384
    • /
    • 2001
  • This Paper Presents field application test results of mass concrete using super retarding agent. The field test was carried out at mat foundation(thickness 1m) of newly constructed information center of Chongju university. Placing lift composed of 2 layers, and each layer is 50cm. Fly ash and flowing method is also applied. Difference of setting time of concrete between with super retarding agent and without super retarding agent is considered. Concrete without super retarding agent is placed at upper layer and with super retarding agent at lower layer According to test results, the reducing method of hydration heat considering difference of setting time with super retarding agent can reduce the highest temperature about 3~4$^{\circ}C$, and delay the peak time about 3~4days. Compressive strength using super retarding agent is somewhat higher than that of normal concrete. Accordingly, super retarding agent does not affect the strength development.

  • PDF

Field Application on Mass Concrete of Combined Coarse Particle Cement and Fly-Ash in Mat Foundation (조분(粗粉) 시멘트와 플라이애시를 복합 치환한 매트 기초 매스콘크리트의 현장적용)

  • Han, Cheon-Goo;Jang, Duk-Bae;Lee, Chung-Sub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • This study carried out a Mock-up test to apply Low-heat Cement (CF) that is adjusted to a fineness of $3,000\;{\pm}\;200\;cm^2/g$ by substituting Coarse particle Cement (CC) and fly ash with ordinary Portland Cement (OPC), then applied it on-site. The result of the test is as follows. The Mock-up test showed that the amount of admixture in CF increased SP agent and AE agent slightly more compared to OPC, while temperature history showed that the highest temperature of CF was around $6{\sim}10^{\circ}C$ lower than that of OPC. Compressive strength in CF was low compared to that of OPC, but the strength width became narrow at the age of 28 days, which is not considered to be significant. In on-site application, slump, air content and chloride content all satisfied the target values, while the temperature history showed that the highest temperature in the center by each cast was about $34^{\circ}C$ in the first cast, $42^{\circ}C$ in the second cast, and $39^{\circ}C$ in the third cast. Compressive strength of specimen for strut management showed low value compared to standard curing, but its strength was reduced at the age of 28 days.

Mock-up Test of Temperature Crack Reduction Method Application by Setting Time Control of Mat Foundation Mass Concrete (응결시간조정에 의한 매트기초 매스 콘크리트의 온도균열저감 공법적용의 Mock-up Test)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, the number of high-rise buildings being built in Korea by major construction companies for residential and commercial use has been increasing. When constructing a high-rise building, it is necessary to apply massive amounts of concrete to form a mat foundation that can withstand the huge load of the upper structure. However, it is of increasing concern that due to limitations in terms of the amount of placing equipment, available job-sites and systems for mass concrete placement in the construction field, it is not always possible to place a great quantity of concrete simultaneously in a large-scale mat foundation, and for this reason consistency between placement lift cannot be secured. In addition, a mat foundation Is likely to crack due to the stress caused by differences inhydration heat generation time. To derive a solution for these problems, this study provides test results of a hydration heat crack reduction method by applying placement lift change and setting time control with a super retarding agent for mass concrete in a large-scale mat foundation. Mock-up specimens with different mixtures and placement liftswere prepared at the job-site of a newly-constructed high-rise building. The test results show that slump flow of concrete before and after adding the super retarding agent somewhat Increases as the target retarding time gets longer, while the air content shows no great difference. The setting time was observed to be retarded as the target retarding time gets longer. As the target retarding time gets longer, compressive strength appears to be decreased at an early stage, but as time goes by, compressive strength gets higher, and the compressive strength at 28 days becomes equal or higher to that of plain concrete without a super retarding agent. For the effect of placement lift change and super retarding agent on the reduction of hydration heat, the application of 2 and 4 placement lifts and a super retarding agent makes it possible to secure consistency and reduce temperature difference between placement lifts, while also extending the time to reach peak temperature. This implies that the possibility of thermal crack induced by hydration heat is reduced. The best results are shown in the case of applying 4 placement lifts.