This study investigated the effect of tender-offer on the value of the firms in Korea. For this purpose, the study applied an event study methodology to 55 cases(bidding firm : 26, target firm : 39) of tender-offer and 164 cases(bidding firm : 144, target firm : 20) of merger announcements made between January 1st, 1994 and September 30th 2004. We found the following results. For tender-offer announcements, there was a significant increase in target firm's value while there was no significant change in bidding firm's value. In contrast, for merger announcements, there was a significant increase in bidding firm's value while there was no significant change in target firm's value. In addition, the synergy effect of tender-offer was higher than that of merger. The results support the Berkovitch and Khanna(1991)'s prediction that bidding firms choose tender-offer rather than merger in the presence of higher synergy profit from M&A.
기존연구에 의하면 무상증자의 공시는 공시기간 중 정(+)의 가격효과를 초래하는 것으로 나타나고 있다. 무상증자에 대한 이러한 시장의 호의적인 반응을 설명하기 위해 여러 가설이 제기되어 왔으며, 그 중 무상증자는 좋은 내부정보를 외부에 신빙성 있게 전달하는 신호기제가 될 수 있다는 신호가설이 특히 지지를 받고 있다. 그런데 짧은 공시기간 중의 정(+)의 주가반응만을 보고 신호가설이 지지된다고 단정짓는데는 무리가 있다. 본 연구에서는 과연 신호가설이 주장하는 것처럼 무상증자가 사업기회의 확대, 미래현금흐름의 증대, 추후 차입여력의 증대를 가져오는가를 더 면밀히 검증하기 위하여 무상증자 실시기업의 장기성과를 조사하였다. 본 연구의 특징은 (1)공시기간 이후의 1년 이내의 기간에 중점을 둔 대부분의 기존연구와 달리 증자 후 36개월간의 장기성과를 측정하였으며, (2)주가수익률 자료와 회계자료를 동시에 이용하여 장기성과를 조사하였고, (3)장기 초과수익률 측정과 검증에 있어 통계적 오류가 있는 누적초과수익률(CAR)을 보완하기 위해 매입보유초과수익률(BHAR)을 사용했으며, 이를 위해 엄격한 기준을 적용하여 표본기업과 비교기업을 선정하였다는 데 있다. 실증분석 결과 신호가설을 지지하는 증거는 발견하지 못하였으며 오히려 무상증자 실시기업이 시장평균 또는 비교기업인 비증자기업에 비해 장기적으로 주가수익률 및 영업성과에 있어 저성과를 보이는 증거를 상당 수 발견하였다. 구체적으로 동일가중평균수익률로 조정한 보유기간 초과수익률의 경우 증자 후 1개월에서 24개윌까지의 BHAR이 5% 미만 수준에서 부(-)의 값을 보였으며, 비모수통계치를 사용할 경우 $1{\sim}36$개월까지의 전기간에서 유의한 부(-)의 저성과를 보이고 있다. 또한 영업성과면에서도 증자기업이 비증자기업에 비해 증자 후 수익성과 현금흐름이 저조하게 나타나고 있다.해 현물시장의 수익률, 변동성이 높은 것으로 나타났으나, 변경후에는 현물시장에 비해 선물시장의 수익률 변동성이 높은 것으로 나타났다. VAR 분석에 의하면 변경후가 변경전에 비하여 선물이 현물을 선도하는 시차가 다소 커진 것으로 나타나 현물시장과 선물시장이 동시에 가격제한폭 확대후에 비효율적으로 되었다는 의미로 판단된다.기간에서는 선물의 15분 선도효과와 현물의 1분 선도효과가 발견되어 선물의 선도효과가 지배적임을 발견하였다.적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.서, Loser포트폴리오를 매수보유하는 반전거래전략이 Winner포트폴리오를 매수보유하는 계속거래전략보다 적합한 전략임을 알 수 있었다. 다섯째, Loser포트폴리오와 Winner포트폴리오를 각각 투자대상종목으로써 매수보유한 반전거래전략과 계속거래 전략에 대한 유용성을 비교검증한 Loser포트폴리오와 Winner포트폴리오 각각의 1개월 평균초과수익률에 의하면, 반전거래전략의 Loser포트폴리오가 계속거래전략의 Winner포트폴리오보다 약 5배정도의 높은 1개월 평균초과수익률을 실현하였고, 반전거래전략의 유용성을 충분히 발휘하기 위하여 장단기의 투자기간을 설정할 경우에 6개월에서 36개월로 이동함에 따라 6개월부터 24개월까지는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은 존재하므로 이러한 전략을 개발 및 활용할 수 있으며, 특히, 한국주식시장에 적합한 거래전략은 반전거래전략이고, 이 전략의 유용성은
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.335-338
/
2012
유전 알고리즘 (Genetic Algorithm)은 기존의 알고리즘 개발방법을 통하여 해결하기 어려운 최적화 등의 문제를 해결하기 위한 자연계의 진화과정을 모방한 방법이다. 본 연구에서는 유전 알고리즘을 이용하여 KOSPI 200에서 거래되고 있는 증권의 매수/매도 종목을 추천하는 방법을 제시한다. 이를 위하여 기술적 분석 (Technical Analysis) 방법 중에서 Slow Stochastic 지표와 MACD 지표를 이용하여, 매일매일 두 지표가 나타내는 매매 신호를 기반으로 해당하는 각각의 종목에 대해 최근 가장 좋은 수익률을 나타내는 매수/매도 종목을 추천하는 방법을 구현한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1336-1339
/
2013
SCTR(StockCharts Technical Ranks)는 주식시장의 주가 상승 강도를 기술적 분석(Technical Analysis)의 6가지 지표에 따라 점수화하여 순위로 나타낸 것이다. 본고에서는 SCTR을 이용하여 국내 주가지수에서 거래되는 증권의 매수 및 매도를 추천하는 시스템을 제시한다. 매수 및 매도의 추천은 유전 알고리즘에 의하여 매매의 신호를 잘 반영하는 SCTR Oscillator 값을 적용한다. 이를 위하여 SCTR을 산출하고, 유전 알고리즘으로 모의투자 하여 구한 상한선과 하한선을 기준으로 주가의 추세를 분석하여 종목을 추천하는 시스템을 구현한다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2000.04a
/
pp.247-250
/
2000
주가는 시계일 데이터의 일종으로 많은 변수들이 주가의 변동에 영향을 미친다. 그러나 몇 개의 어떠한 변수가, 어떻게 영향을 미치는 지 정확히 알려져 있지 않다. 그렇기 때문에 주가를 예측하는 것은 쉽지 않으며 단지 등락을 예측하는 것 조차도 쉽지 않다. 본 논문에서는 주가를 신호와 잡음이 혼합된 것으로 가정하고 그 특성을 고려하여, 전 종목에 대한 등락을 예측하지 않고, 예측율이 높은 종목을 선정하는 것을 목표로 하였다. MLP를 BP로 학습시켰으면 입력으로는 28개의 주가분석 지표값이 사용되었다. 여러 예측 기간으로 실험하였으며, 예측기간이 60일일 때 77.1%의 예측율을 보였고 선정된 종목의 등락 예측율은 88%였다.
Journal of the Korea Society of Computer and Information
/
v.28
no.8
/
pp.59-66
/
2023
The Golden Cross is commonly seen as a buy signal in financial markets, but its reliability for predicting stock price movements is limited due to market volatility. This paper introduces a time-invariant approach that considers the Golden Cross as a singular event. Utilizing LSTM neural networks, we forecast significant stock price changes following a Golden Cross occurrence. By comparing our approach with traditional time series analysis and using a confusion matrix for classification, we demonstrate its effectiveness in predicting post-event stock price trends. To conclude, this study proposes a model with a precision of 83%. By utilizing the model, investors can alleviate potential losses, rather than making buy decisions under all circumstances following a Golden Cross event.
This paper presents a reinforcement learning framework for stock trading systems. Trading system parameters are optimized by Q-learning algorithm and neural networks are adopted for value approximation. In this framework, cooperative multiple agents are used to efficiently integrate global trend prediction and local trading strategy for obtaining better trading performance. Agents Communicate With Others Sharing training episodes and learned policies, while keeping the overall scheme of conventional Q-learning. Experimental results on KOSPI 200 show that a trading system based on the proposed framework outperforms the market average and makes appreciable profits. Furthermore, in view of risk management, the system is superior to a system trained by supervised learning.
As the use of trading systems increases recently, many researchers are interested in developing intelligent trading systems using artificial intelligence techniques. However, most prior studies on trading systems have common limitations. First, they just adopted several technical indicators based on stock indices as independent variables although there are a variety of variables that can be used as independent variables for predicting the market. In addition, most of them focus on developing a model that predicts the direction of the stock market indices rather than one that can generate trading signals for maximizing returns. Thus, in this study, we propose a novel intelligent trading system that mitigates these limitations. It is designed to use both the technical indicators and the other non-price variables on the market. Also, it adopts 'two-threshold mechanism' so that it can transform the outcome of the stock market prediction model based on support vector machines to the trading decision signals like buy, sell or hold. To validate the usefulness of the proposed system, we applied it to the real world data-the KOSPI200 index from May 2004 to December 2009. As a result, we found that the proposed system outperformed other comparative models from the perspective of 'rate of return'.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.