• 제목/요약/키워드: 매니폴드 러닝

검색결과 2건 처리시간 0.02초

매니폴드 데이터 증강기법 기반의 딥러닝 방법론을 적용한 축소 모델 개발 (Development of a Reduced Order Model using a Deep Learning-based Manifold-Augmented Approach)

  • 천성우;김혜진;류석희;조해성;이학진
    • 한국전산구조공학회논문집
    • /
    • 제37권5호
    • /
    • pp.337-344
    • /
    • 2024
  • 본 논문에서는 저 레이놀즈 수 영역에서 에어포일의 공기역학적 성능을 예측하기 위한 딥러닝 기반의 축소 모델을 제시하였다. 딥러닝 기반 축소 모델에서 CFD 해석 결과의 높은 차원의 데이터를 효율적으로 다루기 위해 변이형 오토인코더를 결합한 합성곱 신경망을 적용하였다. 부호화 거리 함수를 통해 에어포일의 형상과 유동 조건을 이미지 데이터화 하고, 이에 대해 합성곱 신경망을 매개변수화 하였다. 또한, 전산유체역학 해석의 계산 비용으로 인한 부족한 훈련 데이터를 극복하기 위해 투영 기반의 비선형 매니폴드 데이터 증강기법을 개발하였다. NACA 4계열 에어포일은 해석 예제로 고려하여 제안하는 프레임워크의 내삽과 외삽 정확도를 평가하였으며 매니폴드 데이터 증강기법을 적용하여 프레임워크의 정확도 향상을 확인하였다.

회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법 (A New Image Analysis Method based on Regression Manifold 3-D PCA)

  • 이경민;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.103-108
    • /
    • 2022
  • 본 논문에서는 회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법을 제안한다. 제안된 방법은 대용량 이미지 데이터 입력 시 효율적인 차원 축소를 위해 개선된 매니폴드 3-D PCA와 PCA의 비선형 확장이 가능한 오토인코더를 기반으로 설계된 구조로 회귀분석 알고리즘으로 구성된 새로운 이미지 분석 방법이다. 오토인코더의 구성으로는 이미지 픽셀 값을 3차원 회전을 통한 최전의 초평면을 도출하는 회귀 매니폴드 3-D PCA와 딥러닝 구조와 유사한 Bayesian Rule 구조를 적용한다. 성능 검증을 위해 실험을 수행한다. 미세먼지 이미지를 활용하여 이미지를 향상되며, 이를 분류 모델을 통한 정확도 성능 평가를 수행한다. 그 결과 딥러닝 성능에 유효함을 확인할 수 있다.