Annual Conference on Human and Language Technology
/
2017.10a
/
pp.255-259
/
2017
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
본 연구에서는 공정 중에 민감하게 반응하는 플라즈마로부터 수집되는 이온에너지 분포(IED : Ion Energy Distribution)와 시계열 신경망 모델링을 결합한 플라즈마 감시 기술을 개발하였다. NIEA(Non-invasive ion analyzer)를 이용하여 IED를 측정하였으며, 모델링에 사용된 신경망은 자기 상관 시계열 신경망(A-NTS : Auto-Correlated Neural Time-Series)이다. 모델 개발을 위한 학습과 테스트 데이터로는 Duty ratio 100%에서 수집한 IED를 이용하였으며, 개발된 모델의 감시 성능은 60%에서 수집된 IED로 평가하였다. 학습인자 k와 m의 범위는 각각 1-3 으로 총 9종류의 (k, m) 조합에 대해서 모델 성능을 평가하였다. 신경망 은닉층 뉴런수는 2-9의 범위에서 최적화하였다. 최적화된 모델은 (2, 3)과 뉴런수 2에서 구해졌으며, 0.335의 예측 에러를 보였다. 60% IED 데이터로 평가한 결과 플라즈마 고장에의 민감도는 62% 이상이었다. 이는 IED의 A-NTS 모델이 플라즈마 고장의 감시에 효과적으로 적용될 수 있음을 의미한다.
An, Seong-Su;Choe, Yeong-Bok;Lee, Jun-Won;Kim, Seong-Un
The Transactions of the Korea Information Processing Society
/
v.6
no.6
/
pp.1598-1608
/
1999
Performance testing for ATM network deals with evaluation of maximal throughput of network by measuring and analyzing of various performance parameters. However, because of the absence of the methodology and framework for performance testing, the results of performance measurements for same implementation under test were much relied on tester. In this paper, the concept of ATM performance testing is described in both cell and frame level and a framework of ATM performance testing is suggested by describing of testing environment for performance measurement and requirements of performance evaluation. For this, we define performance measuring method and parameters for each case.
Proceedings of the Korea Society for Simulation Conference
/
1999.10a
/
pp.81-86
/
1999
본 연구는 DEVS 모델링 및 시뮬레이션을 이용한 침입 탐지 기법의 성능평가를 주목적으로 한다. 최근 컴퓨터망의 확대와 컴퓨터 이용의 급격한 증가에 따른 부작용으로 컴퓨터 보안 문제가 중요하게 대두되고 있으며 이러한 추세에 따라 해커들로부터의 침입을 줄이기 위한 침입 탐지 시스템에 관한 연구가 활발히 진행되고 있다. 한편, 침입 탐지 기법으로 전문가 시스템, 신경망, 유전자 알고리즘 등 인공지능 기법을 이용한 다양한 시도가 이루어지고 있으나 이러한 기법들에 대한 성능평가는 대부분 실제 시스템의 구축을 통해서만 다루어 왔다. 따라서, 이를 극복하기 위하여 시뮬레이션 기법의 도입을 통한 성능평가 방법이 요청된다. 따라서, 본 연구에서는 엔진 베이스 모델링을 통하여 일반적인 침입 탐지 시스템을 설계하고 침입 탐지 기법의 하나인 유전자 알고리즘을 적용하여 시뮬레이션 테스트를 수행함으로써 DEVS 모델링 및 시뮬레이션을 이용한 성능평가의 타당성을 검증한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.7B
/
pp.1167-1177
/
2000
본 논문에서는 접속노드와 무선채널로 구성되는 무선 ATM(Asynchronous Transfer Mode) 접속망의 셀 손실율과 호손율간의 관계를 도출하였다. 이를 위해 우선 ATM 접속망의 트래픽 모델을 셀 레벨, 버스트셀 레벨 및 호접속레벨로 구부하여 분석하였고, 무선접속노드의 CLR(Cell Loss RAtio) 성능을 나타낼 수 있는 수식을 VBR(Variable Bit Rate) 및 램덤 트래픽으로 구분하여 제시하였으며 무선채널에 대해서는 랜덤에러 및 버스트 에러환경으로 구분하여 CLR 성능을 나타낼 수 있는 수식을 유도하였다. 그리고 접속노드와 무선채널의 CLR을 나타내는 수식을 이용하여 무선 ATM 접속망의 CLR 성능을 나타내는 수식을 도출한 후 접속망의 트래픽 성능평가를 위해 VBR, CBR 및 랜덤 트래픽 형태별로 CLR과 호손율간의 관계를 분석하였다. 즉 이용도와 CLR간의 관계로부터 셀 레벨의 접속망 CLR 목표치가 정해지면 이용도 및 접속 회선수를 구할 수 있으며 이를 호 접속레벨의 Erlang-B 관계식과 관련시켜서 CLR과 호손율간의 관계를 제시하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.10c
/
pp.1-3
/
2003
OBS망에서 버스트의 충돌로 인한 버스트의 drop은 TCP의 성능에 중요한 영향을 끼치나, 기존의 drop policy에서는 이를 고려하지 않으며 TCP에 대한 연구로는 버스트의 assembling이 주를 이루고 있다. 본 논문에서는 OBS망에서 TCP의 재전송 문제를 drop policy와 연계하여 그 성능을 향상시키고자 한다. 본 논문에서 제안하는 drop policy는 버스트의 재전송 횟수가 더 작은 버스트를 drop시키는 TCP 기반 DP이다. TCP 기반 DP 모델과 일반적인 DP 모델의 성능을 ns2를 이용한 시뮬레이션을 통해 평가하며, 이 때 시간의 변화에 따른 TCP throughput과 패킷의 drop rate을 비교 분석한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04a
/
pp.868-870
/
2004
ad-hoc 망에서 라우팅 프로토콜의 부하균등(load balancing)은 이동성과 전송 지연사이의 trade-off로 인하여 성능 관점에서 중요한 이슈가 되어왔다. 부하균등을 고려한 SLAP(Simple Load-balancing Ad-hoc routing Protocol)이 제안되었으나 혼잡이 발생하거나 망의 토폴로지가 변화하였을 때 유연하게 대처하지 못한다. 본 논문에서는 ad-hoc 망에서 트래픽 혼잡 제어와 망의 이동성에 적응하기 위하여 동적인 임계치를 사용하는 부하균등 라우팅 프로토콜을 제안하였다. 제안된 프로토콜은 성능은 GloMoSim으로 시뮬레이션을 수행하여 AODV, DSR, SLAP과 지연, 패킷 전송률 등을 비교하여 평가하였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.05a
/
pp.169-185
/
2005
신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상인식과 영상 인식의 주요 응용 분야인 차량 번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.313-315
/
2003
분할 및 합병 개념에 바탕을 둔 모듈라 신경망이 자동차 번호판 문자 인식에서 단일 신경망 사용 보다 학습 질 측면이나 학습 속도 면에서 좋은 결과를 보였다. 본 논문에서는 번호판 인식을 위한 모듈라 신경망 구성 시, 특징 벡터 클러스터링 방법에 따른 모듈라 신경망의 성능을 평가하였다. K-means Clustering 알고리즘을 이용하여 유사한 특징 벡터를 그룹핑하는 방법과 본 논문에서 제안한 알고리즘을 사용하여 유사하지 않는 특징 벡터들을 그룹핑하는 방법 각각을 구현하여 실험하였다. 실험결과, 유사하지 않는 특징 벡터들로 모듈라 신경망을 구성할 경우가 그렇지 않은 경우보다 좋은 인식 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.