• 제목/요약/키워드: 말뭉치 자동 구축

검색결과 122건 처리시간 0.023초

뉴스 기사 키워드 추출을 위한 구묶음 주석 말뭉치 구축 (Chunking Annotation Corpus Construction for Keyword Extraction in News Domain)

  • 김태영;김정아;김보희;오효정
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.595-597
    • /
    • 2020
  • 빅데이터 시대에서 대용량 문서의 의미를 자동으로 파악하기 위해서는 문서 내에서 주제 및 내용을 포괄하는 핵심 단어가 키워드 단위로 추출되어야 한다. 문서에서 키워드가 될 수 있는 단위는 복합명사를 포함한 단어가 될 수도, 그 이상의 묶음이 될 수도 있다. 한국어는 언어적 특성상 구묶음 개념이 적용되는 데, 이를 통해 주요 키워드가 될 수 있는 말덩이 추출이 가능하다. 따라서 본 연구에서는 문서에서 단어뿐만 아니라 다양한 단위의 키워드 묶음을 태깅하는 가이드라인 정의를 비롯해 태깅도구를 활용한 코퍼스 구축 방법론을 고도화하고, 그 방법론을 실제로 뉴스 도메인에 적용하여 주석 말뭉치를 구축함으로써 검증하였다. 본 연구의 결과물은 텍스트 문서의 내용을 파악하고 분석이 필요한 모든 텍스트마이닝 관련 기술의 기초 작업으로 활용 가능하다.

  • PDF

말뭉치와 형태소 분석기를 활용한 한국어 자동 띄어쓰기 (Automatic Word Spacing Using Raw Corpus and a Morphological Analyzer)

  • 심광섭
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.68-75
    • /
    • 2015
  • 본 논문에서는 띄어쓰기가 전혀 되어 있지 않은 문자열을 입력 받아 말뭉치에서 추출한 어절 정보를 이용하여 자동 띄어쓰기를 해 주는 방법론을 제안한다. 형태소 분석기도 사용되나 오류 수정이라는 제한적인 용도로만 사용된다. 성능 평가를 위해 1,000만 어절 규모의 세종 말뭉치에서 순수 한글 585만 어절을 발췌하여 10 개의 세트로 나누고 10 배수 교차 검증을 실시한 결과 98.06%의 음절 정확도와 94.15%의 어절 재현율을 얻었다. 또한, 개인용 컴퓨터에서 초당 25만 어절, 1.8 MB의 문서를 처리할 수 있을 정도로 빠르다. 제안된 방법의 정확도나 재현율은 어절 사전의 크기에 영향을 받기 때문에 보다 큰 말뭉치로 어절 사전을 구축하면 성능이 더욱 향상될 것으로 기대된다.

일관성 있는 문서분류 및 키워드 추출을 위한 말뭉치 구축도구 (A Corpus Construction System of Consistent Document Categorization and Keyword Extraction)

  • 정재철;박소영;장준호;길태숙
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.675-676
    • /
    • 2010
  • 최근에 웹 문서의 양이 빠르게 증가함에 따라 사용자가 원하는 정보를 검색하기 위한 효율적인 문서분류방법에 대한 연구가 요구되고 있다. 본 논문에서는 효율적인 문서분류 시스템 개발을 위한 자료수집 단계에서, 제시되는 각 문서에 대해 일관성 있는 문서범주 및 사용용도, 키워드 정보를 부착하기 위한 말뭉치구축 도구를 제안한다. 이 때 다른 사용자가 입력한 정보를 제시함으로써 자신의 것과 비교 및 수정할 수 있는 검증단계를 거쳐 일관성을 높인다. 또한 웹 환경에서 실행하여 말뭉치 구축자가 언제 어디서든지 편하게 말뭉치를 구축할 수 있다.

  • PDF

자동 구축된 구문패턴사전과 규칙을 이용한 구묶음 (Chunking Using Automatic Constructed Syntactic Pattern Dictionary and Rule)

  • 임지희;최호섭;이정철;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.35-39
    • /
    • 2004
  • 본 논문은 실용적인 구문분석기의 전단계로서, 자동 구축된 구문패턴사전과 규칙을 이용하여 구묶음하는 방법을 제안한다. 우선 규칙은 구문분석 말뭉치(30,875어절)를 대상으로 자동 추출된 고빈도의 규칙(Rewriting Rule)을 본 논문에 맞게 수동으로 구축하였다. 규칙은 조건부, 행위부로 이루어진 이진 규칙(binary rule)의 형태를 이루며, 명사구(NP), 수식어구(AP, DP), 인용구(X), 용언구(VP, VC)을 대상으로 15개를 구축하였다. 그리고 구문패턴은 중심어와 중심어 선행 요소의 특성뿐만 아니라 중심어 후행 요소도 고려하여 형식화시킨 것으로, 중심어의 복합용언 여부에 따라 일반용언패턴과 본+보조용언패턴으로 구분한다. 부분적인 언어 현상의 처리보다는 실세계에서 사용되는 수많은 문장들에 내재되어 있는 매우 광범위한 언어 현상의 처리를 하기 위해, 구문패턴은 형태소주석 말뭉치(460만 어절)을 대상으로 자동 구축하였다. 구축된 구문패턴사전과 규칙을 이용하여 구묶음을 수행한 결과 정확율 83.09%가 나타났다.

  • PDF

Bidirectional Dynamic LSTM을 이용한 음절 단위 개체명 추출 및 자동화된 말뭉치 구축 (Syllables-based Named Entity Extraction and Automatic Corpus Construction using Bidirectional Dynamic LSTM)

  • 오성식;임창대;안기호;박외진
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.317-320
    • /
    • 2017
  • 개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.

  • PDF

도메인에 비종속적인 대화에서의 화행 분류 (Dialogue Act Classification for Non-Task-Oriented Korean Dialogues)

  • 김민정;한경수;박재현;송영인;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.246-253
    • /
    • 2006
  • 대화 에이전트와 관련된 지금까지의 연구는 대개 대상 도메인을 한정하고, 특정 목적을 달성하기 위해 사용자와 대화할 수 있는 에이전트에 관한 연구가 많았다. 본 연구에서는 도메인이 한정되지 않은 일반 도메인 대화에서 화행(speech act)정보를 수동으로 부착시켜 구축한 말뭉치에 대해 소개하고 이 말뭉치를 토대로 자동으로 화행을 분류할 수 있는 유용한 자질들을 선보인다. 그리고 도메인이 한정된 말뭉치와 도메인이 한정되지 않은 말뭉치를 자동으로 화행분류해 본 실험한 결과를 비교하였다.

  • PDF

과학 논문 초록 말뭉치 구축 및 선학습 트랜스포머 기반 초록 자동구조화 방법 (Scientific Paper Abstract Corpus and Automatic Abstract Structure Parsing using Pretrained Transformer)

  • 김서경;조윤희;허세훈;정상근
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.280-283
    • /
    • 2020
  • 논문 초록은 논문의 내용을 요약해 제시함으로써 독자들의 연구결과물에 대한 빠른 검색과 이해를 도모한다. 초록의 구성은 대부분 전형적인 경우가 많기 때문에, 초록의 구조를 자동 분석하여 색인해두면 유사구조 초록을 검색하거나 생성하는 등의 연구효율화에 기여할 수 있다. 허세훈 외 (2019)는 초록 자동구조화를 위한 말뭉치 SPA2019 및 기계학습기반의 자동구조화 방법을 제시하였다. 본 연구는, 기존 SPA2019 의 구조화 오류를 바로잡고, SPA2019 에서 추출한 1,346 개의 초록데이터와 2,385 개의 초록데이터를 추가한 SPA2020 말뭉치를 새로이 소개한다. 또한, 다양한 선학습 기반 트랜스포머들을 활용하여 초록 자동구조화를 수행하였으며, 그 결과 BERT-0.86%, RoBERTa-0.86%, ALBERT-0.84%, XLNet-0.86%, DistilBERT-0.85% 등의 자동구조화 성능을 보임을 확인하였다.

  • PDF

말뭉치로부터 격틀 구축에 필요한 학습 데이터 추출 (Extraction of the Training Data for Building Case Frames from a Corpus)

  • 양단희;송만석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.287-292
    • /
    • 1998
  • 실용적인 격틀(Case frame) 정보를 말뭉치로부터 자동구축하기 위해서는 대량의 홀문장이 필요하다. 그리고 국어 문장 형식은 영어와 많은 차이점이 있다. 또한 기존의 격틀 구축 연구에서 전제했던 광범위한 학습 데이터와 언어학적 지식은 국어에 대해 현재 존재하지 않는다. 그러므로 본 연구는 그러한 문제점들을 밝히고 현실적인 접근 방법을 제시한다. 그리고 겹문장을 홑문장 형태의 문장들로 바꾸기 위한 알고리즘을 제시한다.

  • PDF

ExoBrain을 위한 한국어 의미역 가이드라인 및 말뭉치 구축 (Korean Proposition Bank Guidelines for ExoBrain)

  • 임수종;권민정;김준수;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.250-254
    • /
    • 2015
  • 본 논문은 한국어 의미역을 정의하고, 기계학습에 기반하여 한국어 의미역 인식 기술을 개발할 때 필요한 학습 말뭉치를 구축할 때 지켜야할 가이드라인을 제시하고자 한다. 한국어 의미역 정의는 전세계적으로 널리 쓰이고 있는 Proposition Bank를 따르면서, 한국어의 특성을 반영하였다. 또한 정의된 의미역 및 태깅 가이드라인에 따라 반자동 태깅 툴을 이용하여 말뭉치를 구축하였다.

  • PDF

텍스트 기반의 훈련 데이터 구축을 위한 자동 데이터 태깅 작업에 대한 연구 (A Study on Automatic Data Tagging for Text-based Training Data Construction)

  • 김나연;소혜령;박준호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.1008-1009
    • /
    • 2020
  • 텍스트 기반의 훈련 데이터는 데이터를 수집한 이후에 각 문자별로 태깅 작업이 필요하다. 말뭉치(Corpus)는 언어학에서 주로 이루고 있는 텍스트 집합이다. 말뭉치는 각 단어의 품사 표기에 대한 정보가 태그 형태로 되어 있다. 본 연구에서는 한국어 기반의 태깅 작업을 연구했으며, 기본 한국어 말뭉치가 아닌 기업이나 연구 기관에서 데이터를 수집하여 말뭉치나 별도 학습 데이터를 구축하기 위한 자동 태깅 방법에 대해 알아본다.