국어사전의 뜻풀이말은 표제어의 의미를 기술할 뿐만 아니라, 상위/하위개념, 부분-전체개념, 다의어, 동형이의어, 동의어, 반의어, 의미속성 등의 많은 의미정보를 내재하고 있다. 본 연구는 뜻풀이말에서 다양한 의미정보를 획득을 위한 기본적인 도구로서 국어사전의 뜻풀이말 구문분석기를 구현하는 것을 목적으로 한다. 이를 위해서 우선 국어사전의 뜻풀이말을 대상으로 일정한 수준의 품사 및 구문 부착 말 뭉치를 구축하고, 이 말뭉치들로부터 품사 태그 중의성 어절의 빈도 정보와 통계적 방법에 기반한 문법규칙과 확률정보를 자동으로 추출한다. 본 연구의 뜻풀이말 구문분석기는 이를 이용한 확률적 차트파서이다. 품사 태그 중의성 어절의 빈도 정보와 문법규칙 및 확률정보는 파싱 과정의 명사구 중의성을 해소한다. 또한, 파싱 과정에서 생성되는 노드의 수를 줄이고 수행 속도를 높이기 위한 방법으로 문법 Factoring, Best-First 탐색 그리고 Viterbi 탐색의 방법을 이용한다. 문법규칙의 확률과 왼쪽 우선 파싱 그리고 왼쪽 우선 탐색 방법을 사용하여 실험한 결과, 왼쪽 우선 탐색 방식과 문법확률을 혼용하는 방식이 가장 정확한 결과를 보였으며 비학습 문장에 대해 51.74%의 재현률과 87.47%의 정확률을 보였다.
The Journal of the Convergence on Culture Technology
/
v.8
no.5
/
pp.489-495
/
2022
It makes difference to LSTM D/L(Deep Learning) results for language model construction as the corpus preprocess changes. An LSTM model was trained with a famouse literaure poems(Ki Hyung-do's work) for training corpus in the study. You get the two wordvector sets for two corpus sets of the original text and eraised word ending text each once D/L training completed. It's been inspected of the similarity/analogy operation results, the positions of the wordvectors in 2D plane and the generated texts by the language models for the two different corpus sets. The suggested words by the silmilarity/analogy operations are changed for the corpus sets but they are related well considering the corpus characteristics as a literature work. The positions of the wordvectors are different for each corpus sets but the words sustained the basic meanings and the generated texts are different for each corpus sets also but they have the taste of the original style. It's supposed that the D/L language model can be a useful tool to enjoy the literature in object and in diverse with the analysis results shown in the study.
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.107-109
/
2011
기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.
Choi, Junhwi;Ryu, Seonghan;Lee, Kyusong;Park, Seonyeong;Yu, Hwanjo;Lee, Gary Geunbae
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.129-132
/
2015
본 논문에서는 단어열 패턴과 리커런트 신경망을 이용한 하이브리드 음성 인식 오류 수정 방법을 제안한다. 음성 인식 결과 문장에서 음성 인식 오류 단어가 발견되었을 경우에 첫째로 단어열 패턴과 그 패턴의 발음열 점수를 통해 1차적 수정을 하고 적절한 패턴을 찾지 못하였을 경우 음절단위로 구성된 Recurrent Neural Network를 통해 단어를 음절단위로 생성하여 2차적으로 오류를 수정한다. 해당 방법론을 한국어로 된 음성 인식 오류와 그 정답 문장으로 구성된 TV 가이드 영역 말뭉치를 바탕으로 성능을 평가하였고, 기존의 단순 단어열 패턴 기반의 음성 인식 오류 수정보다 성능이 향상되었음을 볼 수 있었다. 이 방법론은 음성 인식 오류와 정답의 말뭉치가 필요 없이 옳은 문장으로만 구성된 일반 말뭉치만으로 훈련이 가능하여, 음성 인식 엔진에 의존적이지 않는 강점이 있다.
In developing question-answering (QA) systems, it is hard to analyze natural language questions syntactically and semantically and to find exact answers to given query questions. In order to avoid these difficulties, we propose a new style of question-answering system that automatically generate natural language queries and can allow to search queries fit for given keywords. The key idea behind generating natural queries is that after significant sentences within text documents are applied to the named entity recognition technique, we can generate a natural query (interrogative sentence) for each named entity (such as person, location, and time). The natural query is divided into two types: simple type and sentence structure type. With the large database of question-answer pairs, the system can easily obtain natural queries and their corresponding answers for given keywords. The most important issue is how to generate meaningful queries which can present unambiguous answers. To this end, we propose two principles to decide which declarative sentences can be the sources of natural queries and a pattern-based method for generating meaningful queries from the selected sentences.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.175-177
/
1999
본 논문에서는 수사 정보와 문장간 유사도를 이용하여 문서의 수사 구조 트리를 생성하는 방법을 제안하였다. 말뭉치에서 찾아낸 수사 정보를 종류별로 분류하고, 이를 사용해서 문서 내의 수사 정보를 추출해서 가능한 모든 구조를 생성한다. 다음으로 문장간의 유사도를 사용해서 가중치가 가장 높은 하나의 구조를 선택한다. 생성된 수사 구조를 사용하여 문서를 요약할 수 있는데, 수사 정보는 언어적 특성을 이용하는 것이므로 모데인에 독립적인 요약 시스템을 만들 수 있다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.154-156
/
1999
문서 분류는 미리 정의된 두 개 또는 그 이상의 클래스에 새로 생성되는 객체들을 할당하는 방법이다. 문서의 자동 분류에 대한 연구는 오래 전부터 연구되어 왔지만 한국어에 대한 적용 및 연구는 다른 분야에 비해 아직까지 활발히 이루어지지 않고 있다. 본 논문에서는 문서를 자동으로 분류하기 위해 문서의 주제어에 가중치를 부여하고, 부족한 문서의 특징을 보충하기 위하여 말뭉치로부터 주제어들과의 상호정보에 의해 추출된 단어를 사용하여 문서를 표현한 후, 가중치를 부여한 문서의 주제어에 베이지안 분류자를 사용하여 문서분류를 수행한다. 실험은 한국어 정보검색 실험용 데이터 집합인 KTset95 문서 4,414개 중 1,300개의 문서를 학습 집합으로, 1,000개의 문서를 분류에 대한 검증 집합으로 사용하였다. 실험 결과, 순수 베이지안 확률을 사용한 기존의 방법보다 실험 집합과 검증 집합에서 각각 1.92%, 4.3% 향상된 분류 정확도를 얻었다.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.116-121
/
1997
한국어 문장에서 술어의 역할이 매우 중요하기 때문에 술어의 하위범주화 정보는 한국어 분석 및 생성에서 필수적이다. 그러나 기존의 한국어 술어의 하위범주화 사전은 전문가의 사전지식이나 직관에 의존하여 만들어졌기 때문에 주관적이고 오류의 가능성이 높으며 많은 수작업이 필요했다. 또 영역에 독립적인 하위범주화 정보를 구축하는 작업은 매우 어렵기 때문에 응용영역에 맞는 하위범주화 정보를 쉽게 구축하는 방법이 요구되었다. 본 논문에서는 구문구조부착 말뭉치를 이용하여 전문가의 제한된 개입만으로 통계정보와 명사의 의미정보를 포함하는 술어의 하위범주화 정보 구축 방법을 제안한다.
Proceedings of the Korean Society for Bioinformatics Conference
/
2003.10a
/
pp.53-60
/
2003
생명과학 관련 문서에서의 이벤트 추출은 관련 연구자들의 연구에 많은 도움을 줄 수 있다. 기존의 연구에서는 주로 이벤트 동사에 대해 패턴을 정의한 후에 정의된 패턴에 의해서만 이벤트를 추출하고자하였다. 그러나 모든 패턴을 수동으로 정의하는 것은 너무 많은 비용이 들기 때문에 패턴을 자동 추출 또는 확장하는 방법이 필요하다. 또한 학습을 하기 위해서는 상당수의 학습 말뭉치가 있어야 하는데 그것 또한 충분하지 않은 실정이다. 본 논문에서는 초기 패턴에 의해 생성된 소량의 정답 이벤트로부터 학습한 후 공기정보와 패턴정보를 이용한 Co-training방법으로 패턴 확장 및 이벤트 추출을 시도하였다. 실험 결과, 이벤트 동사의 패턴 정보가 유용한 정보라는 것을 확인할 수 있었고, 후보 이벤트 내의 개체간 공기정보와 문법관계정보 또한 매우 중요한 정보라는 것을 새롭게 보일 수 있었다. GENIA 말뭉치에서 162개의 이벤트 동사에 대해 실험한 결과, 88.02%의 정확률, 79.25%의 재현율을 얻었다.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.202-206
/
2010
이 논문에서는 한국어 형태소 분석기 KMM(Korean Malaga Morphology)을 소개하고자 한다. KMM의 개발 동기는 이후 자연언어 처리 단계의 기반으로 사용될 수 있을 뿐 아니라 이론 형태론 연구의 도구로도 사용될 수 있도록 상세한 형태 동사 의미 정보를 제공하는 것이었다. 이론적 틀은 좌연접 문법(Left-Associative Grammar)에 기초한 LA-MORPH이며, 좌연접 기반 문법 개발 도구인 MALAGA로 구현되었다. LA-MORPH에 기반한 KMM은 분석 실행중이 아닐 때에는 사전의 규모를 최소한으로 유지하다가 분석에 필요할 때에만 분석용 사전을 자동으로 생성한다. 형태소 분석은 분석용 사전에 근거하여, 매칭과 결합이라는 단순한 알고리즘만을 사용한다. KMM의 분석은 동사 어절의 경우, 시제, 서법, 문형, 대우법, 명사 어절의 경우 격정보, 수사 결합어절의 경우 추출된 수랑 정보 등과 같은 상세한 정보를 제시한다. 세종 말뭉치와 KIBS 말뭉치를 KMM 을 이용해서 분석한 결과 각각의 94.96%와 94.59%의 분석률과 88.4%와 90.7%의 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.