• Title/Summary/Keyword: 말뭉치 생성

Search Result 139, Processing Time 0.029 seconds

Guided Sequence Generation using Trie-based Dictionary for ASR Error Correction (음성 인식 오류 수정을 위한 Trie 기반 사전을 이용한 Guided Sequence Generation)

  • Choi, Junhwi;Ryu, Seonghan;Yu, Hwanjo;Lee, Gary Geunbae
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.211-216
    • /
    • 2016
  • 현재 나오는 많은 음성 인식기가 대체로 높은 정확도를 가지고 있더라도, 음성 인식 오류는 여전히 빈번하게 발생한다. 음성 인식 오류는 관련 어플리케이션에 있어 많은 오동작의 원인이 되므로, 음성 인식 오류는 고쳐져야 한다. 본 논문에서는 Trie 기반 사전을 이용한 Guided Sequence Generation을 제안한다. 제안하는 모델은 목표 단어와 그 단어의 문맥을 Encoding하고, 그로부터 단어를 Character 단위로 Decoding하며 단어를 Generation한다. 올바른 단어를 생성하기 위하여, Generation 시에 Trie 기반 사전을 통해 유도한다. 실험을 위해 모델은 영어 TV 가이드 도메인의 말뭉치의 음성 인식 오류를 단순히 Simulation하여 만들어진 말뭉치로부터 훈련되고, 같은 도메인의 음성 인식 문장과 결과로 이루어진 병렬 말뭉치에서 성능을 평가하였다. Guided Generation은 Unguided Generation에 비해 14.9% 정도의 오류를 줄였다.

  • PDF

Guided Sequence Generation using Trie-based Dictionary for ASR Error Correction (음성 인식 오류 수정을 위한 Trie 기반 사전을 이용한 Guided Sequence Generation)

  • Choi, Junhwi;Ryu, Seonghan;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.211-216
    • /
    • 2016
  • 현재 나오는 많은 음성 인식기가 대체로 높은 정확도를 가지고 있더라도, 음성 인식 오류는 여전히 빈번하게 발생한다. 음성 인식 오류는 관련 어플리케이션에 있어 많은 오동작의 원인이 되므로, 음성 인식 오류는 고쳐져야 한다. 본 논문에서는 Trie 기반 사전을 이용한 Guided Sequence Generation을 제안한다. 제안하는 모델은 목표 단어와 그 단어의 문맥을 Encoding하고, 그로부터 단어를 Character 단위로 Decoding하며 단어를 Generation한다. 올바른 단어를 생성하기 위하여, Generation 시에 Trie 기반 사전을 통해 유도한다. 실험을 위해 모델은 영어 TV 가이드 도메인의 말뭉치의 음성 인식 오류를 단순히 Simulation하여 만들어진 말뭉치로부터 훈련되고, 같은 도메인의 음성 인식 문장과 결과로 이루어진 병렬 말뭉치에서 성능을 평가하였다. Guided Generation은 Unguided Generation에 비해 14.9% 정도의 오류를 줄였다.

  • PDF

Korean Dependency Parsing Based on Learning Weights of Features (자질 가중치 학습을 이용한 한국어 의존파싱)

  • Kim, Young-Tae;Ra, Dong-Yul;Lim, SooJong
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.63-67
    • /
    • 2010
  • 본 논문에서는 자질(feature)의 가중치를 학습하여 이용하는 기계학습 기반 한국어 의존 파싱 기법을 소개한다. 이를 위하여 모든 가능한 의존관계에 대하여 각 의존관계마다 일정한 수의 자질을 생성한다. 자질마다 가중치에 의하여 그 중요도를 나타낸다. 자질의 가중치 값은 의존관계가 태깅된 구문구조 학습 말뭉치를 이용하여 학습한다. 이를 위해 본 논문에서는 간단한 가중치 기계학습 기법을 제시한다. 실험을 위한 언어 자원으로는 구구조부착 세종말뭉치를 변환하여 구한 의존관계 부착 말뭉치를 사용하였다. 실험 결과 약 86.5%의 정확률을 가지는 의존파싱이 가능함을 관찰하였다.

  • PDF

Syllables-based Named Entity Extraction and Automatic Corpus Construction using Bidirectional Dynamic LST (Bidirectional Dynamic LSTM 을 이용한 음절 단위 개체명 추출 및 자동화된 말뭉치 구축)

  • Oh, Sungsik;Lim, Changdae;Ahn, Keeho;Park, Weijin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.317-320
    • /
    • 2017
  • 개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.

  • PDF

Loanword Recognition Using Deep Learning (심층학습을 이용한 음절태깅 기반의 외래어 인식 시스템)

  • Park, Ho-Min;Kim, Chang-Hyun;Cheon, Min-Ah;Noh, Kyung-Mok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.71-75
    • /
    • 2017
  • 외래어란 외국어로부터 들어와 한국어에 동화되고 한국어로서 사용되는 언어이다. 나날이 우리의 언어사용 문화에서 외래어의 사용 비율은 높아져가는 추세로, 전문분야에서는 특히 두드러진다. 그러므로 더 효율적이고 효과적인 자연언어처리를 위해서 문서 내 외래어 인식은 중요한 전처리 과정이다. 따라서 본 논문에서는 bidirectional LSTM(이하 bi-LSTM)-CRF 모형의 심층학습을 이용한 음절태깅 기반의 외래어 인식 시스템을 제안한다. 제안하는 시스템의 외래어 인식 학습 과정은 다음과 같다. 첫째, 학습용 말뭉치 자료의 한글 음절들과 공백, 마침표(.)를 토대로 word2vec을 통해 학습용 피쳐(feature) 자료를 생성한다. 둘째, 학습용 말뭉치 자료와 학습용 피쳐 자료를 결합하여 bi-LSTM 모형 학습 자료를 구축한다. 셋째, bi-LSTM 모형을 거쳐 학습된 결과물을 CRF 모형에서 로그 가능도(log likelyhood)와 비터비(Viterbi) 알고리즘을 통해 학습 결과물을 내놓는다. 넷째, 학습용 말뭉치 자료의 정답과 비교한 뒤 모형 내부의 수치들을 조정한다. 다섯째, 학습을 마칠 때까지 반복한다. 본 논문에서 제안하는 시스템을 이용하여 자체적인 뉴스 수집 자료에 대해서 높은 정확도와 재현율을 기록하였다.

  • PDF

Loanword Recognition Using Deep Learning (심층학습을 이용한 음절태깅 기반의 외래어 인식 시스템)

  • Park, Ho-Min;Kim, Chang-Hyun;Cheon, Min-Ah;Noh, Kyung-Mok;Kim, Jae-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.71-75
    • /
    • 2017
  • 외래어란 외국어로부터 들어와 한국어에 동화되고 한국어로서 사용되는 언어이다. 나날이 우리의 언어사용 문화에서 외래어의 사용 비율은 높아져가는 추세로, 전문분야에서는 특히 두드러진다. 그러므로 더 효율적이고 효과적인 자연언어처리를 위해서 문서 내 외래어 인식은 중요한 전처리 과정이다. 따라서 본 논문에서는 bidirectional LSTM(이하 bi-LSTM)-CRF 모형의 심층학습을 이용한 음절태깅 기반의 외래어 인식 시스템을 제안한다. 제안하는 시스템의 외래어 인식 학습 과정은 다음과 같다. 첫째, 학습용 말뭉치 자료의 한글 음절들과 공백, 마침표(.)를 토대로 word2vec을 통해 학습용 피쳐(feature) 자료를 생성한다. 둘째, 학습용 말뭉치 자료와 학습용 피쳐 자료를 결합하여 bi-LSTM 모형 학습 자료를 구축한다. 셋째, bi-LSTM 모형을 거쳐 학습된 결과물을 CRF 모형에서 로그 가능도(log likelyhood)와 비터비(Viterbi) 알고리즘을 통해 학습 결과물을 내놓는다. 넷째, 학습용 말뭉치 자료의 정답과 비교한 뒤 모형 내부의 수치들을 조정한다. 다섯째, 학습을 마칠 때까지 반복한다. 본 논문에서 제안하는 시스템을 이용하여 자체적인 뉴스 수집 자료에 대해서 높은 정확도와 재현율을 기록하였다.

  • PDF

Scientific Paper Abstract Corpus and Automatic Abstract Structure Parsing using Pretrained Transformer (과학 논문 초록 말뭉치 구축 및 선학습 트랜스포머 기반 초록 자동구조화 방법)

  • Kim, Seokyung;Cho, Yunhui;Heo, Sehun;Jung, Sangkeun
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.280-283
    • /
    • 2020
  • 논문 초록은 논문의 내용을 요약해 제시함으로써 독자들의 연구결과물에 대한 빠른 검색과 이해를 도모한다. 초록의 구성은 대부분 전형적인 경우가 많기 때문에, 초록의 구조를 자동 분석하여 색인해두면 유사구조 초록을 검색하거나 생성하는 등의 연구효율화에 기여할 수 있다. 허세훈 외 (2019)는 초록 자동구조화를 위한 말뭉치 SPA2019 및 기계학습기반의 자동구조화 방법을 제시하였다. 본 연구는, 기존 SPA2019 의 구조화 오류를 바로잡고, SPA2019 에서 추출한 1,346 개의 초록데이터와 2,385 개의 초록데이터를 추가한 SPA2020 말뭉치를 새로이 소개한다. 또한, 다양한 선학습 기반 트랜스포머들을 활용하여 초록 자동구조화를 수행하였으며, 그 결과 BERT-0.86%, RoBERTa-0.86%, ALBERT-0.84%, XLNet-0.86%, DistilBERT-0.85% 등의 자동구조화 성능을 보임을 확인하였다.

  • PDF

Korean Learning Assistant System with Automatically Extracted Knowledge (자동 추출된 지식에 기반한 한국어 학습 지원 시스템)

  • Park, Gi-Tae;Lee, Tae-Hoon;Hwang, So-Hyun;Kim, Byeong Man;Lee, Hyun Ah;Shin, Yoon Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.91-102
    • /
    • 2012
  • Computer aided language learning has become popular. But the level of automation of constructing a Korean learning assistant system is not so high because a practical language learning system needs large scale knowledge resources, which is very hard to acquire. In this paper, we propose a Korean learning assistant system that utilizes easily obtainable knowledge resources like a corpus, web documents and a lexicon. Our system has three modules - problem solving, pronunciation marker and writing assistant. Automatic problem generator uses a corpus and a lexicon to make problems with one correct answer and three distracters, then verifies their suitability by utilizing frequency information from web documents. We analyze pronunciation rules for a pronunciation marker and recommend appropriate words and sentences in real-time by using data extracted from a corpus. In experiment, we evaluate 400 automatically generated problems, which show 89.9% problem suitability and 64.9% example suitability.

Syllable-based Probabilistic Models for Korean Morphological Analysis (한국어 형태소 분석을 위한 음절 단위 확률 모델)

  • Shim, Kwangseob
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.642-651
    • /
    • 2014
  • This paper proposes three probabilistic models for syllable-based Korean morphological analysis, and presents the performance of proposed probabilistic models. Probabilities for the models are acquired from POS-tagged corpus. The result of 10-fold cross-validation experiments shows that 98.3% answer inclusion rate is achieved when trained with Sejong POS-tagged corpus of 10 million eojeols. In our models, POS tags are assigned to each syllable before spelling recovery and morpheme generation, which enables more efficient morphological analysis than the previous probabilistic models where spelling recovery is performed at the first stage. This efficiency gains the speed-up of morphological analysis. Experiments show that morphological analysis is performed at the rate of 147K eojeols per second, which is almost 174 times faster than the previous probabilistic models for Korean morphology.

korean-Hanja Translation System based on Semantic Processing (의미처리 기반의 한글-한자 변환 시스템)

  • Kim, Hong-Soon;Sin, Joon-Choul;Ok, Cheol-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.398-401
    • /
    • 2011
  • 워드프로세서에서의 한자를 가진 한글 어휘의 한자 변환 작업은 사용자에 의해 음절/단어 단위의 변환으로 많은 시간이 소요되어 효율이 떨어진다. 본 논문에서는 한글 문장의 의미처리를 통해 문맥에 맞는 한자를 자동 변환하는 시스템을 제안한다. 문맥에 맞는 한글-한자 변환을 위해서는 우선 정확한 형태소 분석 및 동형이의어 분별이 선행되어야 한다. 이를 위해 본 논문에서는 은닉마르코프모델 기반의 형태소 및 동형이의어 동시 태깅 시스템을 구현하였다. 제안한 시스템은 형태의미 세종 말뭉치 1,100만여 어절을 이용하여 unigram과 bigram을 추출 하였고, unigram을 이용하여 어절의 생성확률 사전을 구축하고 bigram을 이용하여 전이확률 학습사전을 구축하였다. 그리고 품사 및 동형이의어 태깅 후 명사를 표준국어대사전에 등재된 한자로 변환하는 시스템을 구현하였다. 구현된 시스템의 성능 확인을 위해 전체 세종 말뭉치를 문장단위로 비학습 말뭉치를 구성하여 실험하였고, 실험결과 한자를 가진 동형이의어에 대한 한자 변환에서 90.35%의 정확률을 보였다.