• 제목/요약/키워드: 말뭉치 변환

검색결과 36건 처리시간 0.03초

세종 문어체 말뭉치를 위한 말뭉치 데이터 추출 도구 (Corpus Data Extracting Tool for Sejong Text Corpus)

  • 박일남;장우석;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.1102-1105
    • /
    • 2010
  • 본 논문에서는 세종 말뭉치 데이터를 활용할 때 한글코드의 변환 및 말뭉치에서 필요한 정보 추출 등 한국어 말뭉치에서 통계 정보를 추출하는데 사용되는 여러 가지 기능들을 한데 묶어, 말뭉치 작업의 사용자 편의성을 개선시키기 위한 도구를 설계, 구현하였다. 이 말뭉치 활용 도구는 세종 말뭉치의 원시, 형태, 형태의미, 구문 말뭉치들을 다양한 옵션에 따라 사용자가 원하는 데이터를 추출할 있을 뿐만 아니라 일반적인 한글 텍스트 파일에 공통적으로 사용되는 코드 변환, 파일 합병, 빈도 계산 등을 제공하기 때문에 말뭉치 작업을 하는 사용자들이 편리하게 사용할 수 있게 하였다.

21세기 세종계획 원시 말뭉치의 유니코드와 코드 변환 (Unicode and Code Conversion for Sejong 21 Raw Corpus)

  • 강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.262-265
    • /
    • 2009
  • 21세기 세종계획은 국어정보화를 위한 범국가적 사업으로서 국어 기초 자원을 구축하는데 매우 큰 기여를 하였으며, 그 주요 결과물로 배포된 세종 말뭉치는 많은 연구자들에게 꼭 필요한 가치있는 결과물이다. 이처럼 소중한 국어 자원을 실제 연구자들이 활용하고자 할 때 불편함을 느끼는 경우가 있는데 그 이유는 균형 말뭉치의 구축이라는 말뭉치의 특성 및 원문 자료의 내용을 최대한 보존하기 위한 노력의 일환으로 사용자 정의 영역에 정의된 문자들이 다수 포함되어 있기 때문이다. 본 논문에서는 자연언어 처리, 정보검색 분야 연구자들이 세종계획 최종 결과물 중에서 원시 말뭉치를 활용하는데 있어서 말뭉치에 사용된 문자코드의 유형을 중심으로 코드 변환 문제점과 그 해결 방안을 모색하고자 한다.

  • PDF

술어와 조사 정보를 이용한 논항의 의미역 변환 (Semantic Role Transformation of Arguments using Predicate and Josa Information)

  • 서민정;석미란;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.51-55
    • /
    • 2014
  • 의미역 결정 (Semantic Role Labeling) 은 문장 내의 술어와 이들의 논항들의 의미 관계를 결정하는 과정을 뜻한다. 의미역 결정을 하기 위해서는 대량의 말뭉치와 다양한 언어 자원이 필요한데, 많은 경우에 PropBank 말뭉치가 사용된다. 한국어 PropBank는 다른 언어에 비해 자료가 적어 그것만을 가지고 의미역 결정을 하기에 적절하지 않다. 또한 한국어 의미 분석을 위해서 지금까지는 세종 말뭉치나 의미역이 활용되어 오기도 하였다. 따라서 한국어 의미역 결정에서는 한국어 PropBank 뿐만 아닌 세종 의미역 표지 부착 말뭉치의 구축 역시 요구되는데 말뭉치 구축 작업이 수동 부착 작업이기 때문에 많은 시간과 비용이 소모된다. 본 논문에서는 이러한 문제점을 해결하기 위해 이미 구축되어 있는 한국어 PropBank 의미역을 세종 의미역으로 자동 변환하는 방법을 제시한다. 자동 변환을 위해서는 먼저 PropBank 의미역의 변환 후보 의미역을 구하여 이들 중에서 가장 적절한 의미역으로 변환한다. 자동 변환을 위해서는 크게 3 가지 특징을 활용하는데, 첫째는 변환 대상 논항의 의미 유사성이고, 둘째는 논항과 의미 관계를 가지고 있는 술어, 그리고 셋째는 논항과 결합되어 있는 조사이다. 이 세 가지 특징을 사용하여 정확한 의미역 변환을 위해 술어, 조사의 의미역 결합 확률 테이블을 구축한다.

  • PDF

의존 구문분석을 위한 한국어 의존관계 가이드라인 및 엑소브레인 언어분석 말뭉치 (Korean Dependency Guidelines for Dependency Parsing and Exo-Brain Language Analysis Corpus)

  • 임준호;배용진;김현기;김윤정;이규철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.234-239
    • /
    • 2015
  • 2000년대 중반 세종 구구조 구문분석 말뭉치가 배포된 이후 의존 구문분석이 구문분석 연구의 주요 흐름으로 자리 잡으면서 많은 연구자들이 구구조 구문분석 말뭉치를 개별적으로 의존구조로 변환하여 구문분석 연구를 수행하였다. 하지만 한국어 문장의 의존구조 표현에 대한 논의가 부족하여 서로 다른 의존구조로 변환 후 구문분석을 연구함으로써 연구 효율성이 저하되는 문제가 발생하였다 본 연구에서는 이와 같은 문제에 접근하기 위하여 한국어 문장에 대한 의존관계 가이드라인을 제안한다. 그리고 제안하는 가이드라인을 기반으로 구축한 엑소브레인 언어분석 말뭉치(725 문장)에 대해 소개한다.

  • PDF

구묶음을 반영한 한국어 의존 구조 말뭉치 생성 (Building Korean Dependency Treebanks Reflected Chunking)

  • 남궁영;김창현;천민아;박호민;윤호;최민석;김재균;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.133-138
    • /
    • 2019
  • 의존 구문 분석은 문장 구성 요소의 위치에 제약이 적고 생략에도 유연하게 대처할 수 있어 한국어 구문 분석에 적합하다. 하지만 의존 구문 분석을 수행할 때 지배소를 결정해야 할 노드 수가 많으면 계산의 복잡도가 올라가고, 각 노드의 지배소를 결정할 때 방향성 문제가 있어 구문 분석에 모호함을 더한다. 이때 지배소 후위 원칙을 엄격하게 적용할 경우 구문적 중심어와 의미적 중심어가 불일치하는 문제가 발생한다. 이러한 문제들을 해소하기 위해 구묶음을 수행한 문장으로 구문 분석을 수행할 수 있다. 따라서, 본 논문에서는 기존의 의존 구문 말뭉치를 말덩이 기반의 의존 구문 말뭉치로 변환하는 알고리즘을 기술하고, 이에 따라 구축한 말뭉치와 기존의 말뭉치를 정량적으로 비교한다.

  • PDF

규칙 기반 학습에 의한 한국어의 기반 명사구 인식 (Base Noun Phrase Recognition in Korean using Rule-based Learning)

  • 양재형
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권10호
    • /
    • pp.1062-1071
    • /
    • 2000
  • 한국어의 기반 명사구, 즉 비재귀적인 단순 명사구를 인식하는 비통계적인 규칙 기반 학습 기법을 제안한다. 학습 말뭉치에 기반 명사구에 대한 초기 예측이 표시되어 있고 목표 말뭉치에는 올바른 기반 명사구가 태그(tag)의 형식으로 표시되어 있다면, 규칙 기반 학습은 먼저 인접한 주위 형태소들의 다양한 문법적 정보를 나타내는 규칙 템플릿을 이용하여 기반 명사구 태그를 수정하는 규칙 후보들을 생성해 내고, 이 후보들 가운데 학습 말뭉치를 목표 말뭉치에 가장 가깝게 변환하는 일련의 규칙들을 차례로 얻어낸다. 국어정보베이스의 15만 단어 규모의 트리 태그 부착 말뭉치를 이용한 실험 결과 386개의 변환 규칙을 얻었으며, 이를 이용하여 90% 이상의 높은 기반 명사구 인식 정확도를 얻을 수 있다.

  • PDF

입력 문장 Noising과 Attention 기반 비교사 한국어 문체 변환 (Attention-based Unsupervised Style Transfer by Noising Input Sentences)

  • 노형종;이연수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.434-439
    • /
    • 2018
  • 문체 변환 시스템을 학습하는 데 있어서 가장 큰 어려움 중 하나는 병렬 말뭉치가 부족하다는 것이다. 최근 대량의 비병렬 말뭉치만으로 문체 변환 문제를 해결하려는 많은 연구들이 발표되었지만, 아직까지도 원 문장의 정보 보존(Content preservation)과 문체 변환(Style transfer) 모두를 이루는 것이 쉽지 않은 상태이다. 특히 비교사 학습의 특성상 문체 변환과 동시에 정보를 보존하는 것이 매우 어렵다. Attention 기반의 Seq2seq 네트워크를 이용할 경우에는 과도하게 원문의 정보가 보존되어 문체 변환 능력이 떨어지기도 한다. 그리고 OOV(Out-Of-Vocabulary) 문제 또한 존재한다. 본 논문에서는 Attention 기반의 Seq2seq 네트워크를 이용하여 어절 단위의 정보 보존력을 최대한 높이면서도, 입력 문장에 효과적으로 Noise를 넣어 문체 변환 성능을 저해하는 과도한 정보 보존 현상을 막고 문체의 특성을 나타내는 어절들이 잘 변환되도록 할 뿐 아니라 OOV 문제도 줄일 수 있는 방법을 제안한다. 우리는 비교 실험을 통해 본 논문에서 제안한 방법들이 한국어 문장뿐 아니라 영어 문장에 대해서도 state-of-the-art 시스템들에 비해 향상된 성능을 보여준다는 사실을 확인하였다.

  • PDF

말뭉치 기반 부분 어절 기분석 사전의 구축과 형태소 분석 (Construction of Partial Word Morpheme Dictionary based on Tagged Corpus and Korean Morphological Analysis)

  • 신준철;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.67-72
    • /
    • 2011
  • 기존의 말뭉치 기반 한국어 형태소 분석 방법은 대용량의 어절 기분석 사전을 사용하여 분석하고, 그 사전에 없는 어절은 코드 변환, 형태소 분리, 원형 복원 규칙 적용 등을 거치는 복잡한 분석 방법을 통해 후보들을 생성했다. 이 복잡한 분석 방법은 제작과 유지보수, 실행 관점 모두에서 효율적이지 못하며 정확률을 낮추고 속도를 느리게 하는 요인이 된다. 이런 문제를 해결하기 위해 부분 어절의 기분석 사전을 구축하여 사용하는 방법이 연구되었다. 본 논문에서는 대용량의 분석 말뭉치를 통해 부분 어절의 기분석 사전을 구축하고 형태소 분석에 사용하는 방법을 제안한다. 세종 말뭉치로 실험한 결과 재현율이 99.05%였으며, 품사 및 동형이의어 태깅 정확률은 96.76%였다.

  • PDF

의미처리 기반의 한글-한자 변환 시스템 (korean-Hanja Translation System based on Semantic Processing)

  • 김홍순;신준철;옥철영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.398-401
    • /
    • 2011
  • 워드프로세서에서의 한자를 가진 한글 어휘의 한자 변환 작업은 사용자에 의해 음절/단어 단위의 변환으로 많은 시간이 소요되어 효율이 떨어진다. 본 논문에서는 한글 문장의 의미처리를 통해 문맥에 맞는 한자를 자동 변환하는 시스템을 제안한다. 문맥에 맞는 한글-한자 변환을 위해서는 우선 정확한 형태소 분석 및 동형이의어 분별이 선행되어야 한다. 이를 위해 본 논문에서는 은닉마르코프모델 기반의 형태소 및 동형이의어 동시 태깅 시스템을 구현하였다. 제안한 시스템은 형태의미 세종 말뭉치 1,100만여 어절을 이용하여 unigram과 bigram을 추출 하였고, unigram을 이용하여 어절의 생성확률 사전을 구축하고 bigram을 이용하여 전이확률 학습사전을 구축하였다. 그리고 품사 및 동형이의어 태깅 후 명사를 표준국어대사전에 등재된 한자로 변환하는 시스템을 구현하였다. 구현된 시스템의 성능 확인을 위해 전체 세종 말뭉치를 문장단위로 비학습 말뭉치를 구성하여 실험하였고, 실험결과 한자를 가진 동형이의어에 대한 한자 변환에서 90.35%의 정확률을 보였다.

세종 계획 말뭉치를 이용한 품사 태거의 성능 개선 (Improving Part-of-speech Tagger by using Sejong Corpus)

  • 김형준;임동희;강승식;은지현;장두성
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.177-180
    • /
    • 2007
  • 품사 태거를 구축할 때 어휘사전 증축이나 변환을 통해 성능 개선을 시도하지만 적당한 품사 태깅 코퍼스의 부재와 태그셋 불일치로 인한 변환 과정에 어려움을 겪고 있다. 본 논문에서는 세종 말뭉치 품사 태깅 코퍼스를 이용하여 품사 태깅용 어휘사전을 증축하고 품사 태거에 적용하여 성능을 개선하는 과정을 기술하였다. 품사 태거의 성능을 개선하기 위하여 세종 코퍼스를 태거의 태그셋에 적합하게 변환하고, 변환된 코퍼스에서 추출된 통계 정보를 품사 태거에서 활용하였다. 세종 코퍼스를 이용하여 품사 태거를 위한 어휘사전을 보강함으로써 품사 태거의 성능을 향상시킬 수 있었다.

  • PDF