• Title/Summary/Keyword: 말뚝 지지력

Search Result 524, Processing Time 0.02 seconds

Relations of Safety Factor and Reliability for Pile Load Capacity (말뚝 기초지지력에 대한 안전율과 신뢰도지수 평가)

  • Kim, Dae-Ho;Kim, Min-Ki;Hwang, Sung-Uk;Park, Young-Hwan;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.65-73
    • /
    • 2006
  • Reliability between safety factor and reliability index for driven and bored pile load capacity was analyzed in this study. 0.1B, Chin, De Beer, and Davisson's methods were used for determining pile load capacity by using load-settlement curve from pile load test. Each method defines ultimate yield and allowable pile load capacities. LCPC method using CPT results was performed for comparing results of pile load test. Based on FOSM analysis using load factors, it is obtained that reliability indices for ultimate pile load capacity were higher than those of yield and allowable condition. Present safety factor 2 for yield and allowable load capacities is not enough to satisfy target reliability index $2.0{\sim}2.5$. However, it is sufficient for ultimate pile load capacity using safety factor 3.

Reliability Analysis of Bearing Capacity Equations for Drilled Shafts Socketed in Weathered Rock (풍화암에 근입된 현장타설말뚝 지지력 공식의 신뢰성 분석)

  • Jung, Sung-Jun;Kim, Sung-Ryul;So, Jin-Man;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • As the use of drilled shafts for foundation of a large size structure increases, the evaluation of the reliable bearing capacity of the pile has become important. The purpose of this study is to verify the reliability of bearing capacity equations for drilled shafts socketed in weathered rock by comparing the bearing capacity values from static load tests with values from bearing capacity equations. In this study, twelve data from static load test were selected from four field sites, and the data of load test and the properties of weathered rock were analyzed. Three methods widely used in practice were selected for analysis, namely the AASHTO method (1996), Carter & Kulhawy method (1988), and FHWA method (1999). The comparison of the bearing capacity values from the bearing capacity equations to those obtained from load tests showed that the Carter & Kulhawy method (1988) was the most reliable in giving conservative design values and smaller COV (Coefficient Of Variation).

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.

Evaluation of Field Applicability of Helical Pile Using Hexagon Joints (육각형 이음부를 이용한 회전관입말뚝의 현장적용성 평가)

  • Jeong, Sangguk
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.635-648
    • /
    • 2020
  • Performance improvement of helical piles in static load tests using hexagon joints that do not require welding or bolting was investigated. Two sites were selected for pile field tests to evaluate their bearing capacity. Static and pull-out load tests were undertaken to assess the method for estimating bearing capacity. The field tests indicated that the bearing capacity of the gravity grout pile was ≥600 kN in the static load test, consistent with the AC 358 Code. The non-grout pile had a bearing capacity of ≤600 kN, suggesting that gravity grouting is required. Field pile load-test results were used to establish the bearing capacity equation, based on a small number of helical pile.

Behavior Characteristics of Helical Pile in Granite Residual Soil (풍화토 지반에 관입된 나선형 강관말뚝의 거동 특성)

  • Cho, Chunhee;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • The rotate penetration pile is a type of displacement pile: the surrounding soil is displaced when installing the pile, and the pile can exert a large bearing power and pullout force. In addition, it uses displaced soil method that does not generate slime, and its applications are increasing in foreign countries owing to the environmentally friendly characteristics such as small noise and vibration. However, mostly driven piles-which are directly driven to the ground, and bored pile- pre-fabricated piles are buried to prebored underground, are used; however, rotate penetration piles still have limited use. Most of the laboratory tests have been carried out until now to identify the support behavior after installation of piles and ground construction, the evaluating the support behavior is lacking due to the rotation intrusive process of the rotate penetration piles. Therefore, this study used indoor experiments simulating rotation intrusive process in weathered soil, to evaluate the bearing power behavior for the weathered soil, varying the diameter of the helical bearing plates, helical bearing plate spacing, number of the helical bearing plates, and helical bearing plate specifications. As the outcome of this study, the helical pile bearing power evaluation results, change in bearing power in accordance with main specifications, and review on the comparative analysis with the existing theories were provided.

Estimation of Ultimate Bearing Capacity for Randomly Installed Granular Compaction Pile Group (임의의 배치형태로 설치된 무리형태의 조립토 다짐말뚝에 대한 극한지지력의 평가)

  • 신방웅;채현식;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.181-191
    • /
    • 2001
  • Granular compaction piles increase the load bearing capacity of the soft ground and reduce the settlement of fecundation built on the reinforced soil. Also the granular compaction piles accelerate the consolidation of soft ground using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. In the present study, the estimation procedure for the ultimate bearing capacity of randomly installed granular compaction pile group is proposed. Also, carbon rod tests have been peformed for verifying the group effect of granular compaction piles and the behavior characteristics such as bulging failure zone on granular compaction piles. From the test results, it is found that bulging failure shape of granular compaction piles was conical shape and the ultimate bearing capacity increased as the spacing of piles became gradually narrow. Also, from the proposed method in this study, the optimal locations of granular compaction piles with various installed cases are analyzed. The results were shown that the bearing capacity was increased in the case concentrated on the central part of pile group.

  • PDF

A Study on the Bearing Capacitiy behavior of Large-diameter Drilled Shafts According to Various Ground Conditions under Pile Tip through Numerical Analysis Results (수치해석 결과 분석을 통한 다양한 말뚝 선단하부의 지반조건에 따른 대구경현장타설말뚝의 지지력 거동에 관한 연구)

  • Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.7-22
    • /
    • 2021
  • In this study, inverse analysis was performed on the bi-directional axial compressive load test conducted on drilled shafts. And the bearing capacities were analyzed by numerical analysis of various pile tip ground conditions of silt clay, silt sand, sand silt, sand gravel, weathered rock, and soft rock. The bearing capacities were analyzed using the P-S method, the Davisson method, and the allowable sttlement of 25.4 mm. The minimum allowable bearing capacities analyzed by three methods were found to be 19.64 MN ~ 24.96 MN. At this time, the base resistances were sharing a 2% ~ 12% of a head load, shaft resistance were shared 88% ~ 98% of the head load. The greater the strength of pile tip was found to increase the allowable bearing capacity. However, the difference between the maximum allowable bearing capacity and the minimum allowable bearing capacity was 5.32 MN, and the increase in the allowable bearing capacity was only 27% depending on the pile tip.

Experimental Study on Bearing Capacity of Ground Treated by Sand Compaction Piles (모래다짐말뚝(SCP) 시공지반의 지지력에 관한 실험적 연구)

  • 김병일;김영욱;이상익;최용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • The SCP(sand compaction pile) method which is a vertical reinforcing technique for soft ground using a sand compaction pile has received increasing popularity in Korea. Currently, there are different methods to evaluate the bearing capacity of the reinforced ground by the SCP method. However, a method that can consider the effect of the replacement ratio on the bearing capacity is not yet available. This study investigated the effect of the replacement ratio on the bearing capacity of the reinforced ground by the SCP method. The study involved laboratory experiments which were conducted on a centrifuge facility. Test conditions included various ranges of replacement ratios (20, 30, and 40%), centrifuged consolidation, and loading. From the results of the study, a method which can evaluate the bearing capacity of the reinforced ground was proposed and verified using the weighted average of the replacement ratio.