• Title/Summary/Keyword: 말뚝

Search Result 1,811, Processing Time 0.025 seconds

Fundamental Study for the Development of a New Pile under Lateral Load (횡하중에 강한 새로운 말뚝의 개발을 위한 기초 연구)

  • Yun, Yeo-Won;Jo, Ju-Hwan;Kim, Du-Gyun
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.45-60
    • /
    • 1997
  • In this research the behavior of a new type of a single pile under lateral loading and against slope sliding is studied. Especially, the section of a new pile is determined throughout experiments, and the single pile behavior under lateral loading and the effect of improvement in slope stability by using new type of pile (gear-shaped) were studied. As a result, it is known that maximum deflection of gear-shaped pile is far smaller than that of traditional PC circular pile for the same lateral loading. And lateral load of gear-shaped pile at allowable deflection was bigger than that of PC circular pile. From the comparison between two hypes of piles, it can be seen that the degree of improvement of safety factor in slope was higher in gear-shaped pile than that of PC pile under the same condition, and it results in the reduction of the number of stabilizing piles in a slope.

  • PDF

A Study on the Characteristic Behavior of the Lateral Load Piles using the Strain Wedge Model and Laboratory Model Test (실내모형실험과 변형률 쐐기모델을 이용한 수평하중을 받는 말뚝의 거동 특성에 관한 연구)

  • Kim, HongTaek;Han, YeonJin;Kim HongLak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.103-112
    • /
    • 2012
  • The most of original horizontal bearing capacity theory of the pile is not efficiently to consider interaction between soil and pile because it is only to consider the earth pressure theory and separately the ground form pile. In recent, in order to improve the pile technology, it is necessary to confirm the real behaviour characteristics of pile under lateral load. Hence, to evaluate the behaviour characteristics of the single and group pile under lateral loads using the strain wedge model that could consider the interaction between soil and piles. Primarily, laboratory scale down model tests was carried out to predict the behaviour characteristics on real size piles using the strain wedge model. The comparative analyses between model test and numerical analysis for the evaluation of whole behaviour were conducted.

A Study on the Effect of Carrying Vertical Loads Over Embankment Piles (성토지지말뚝의 연직하중 분담효과에 관한 연구)

  • 홍원표;이광우
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.285-294
    • /
    • 2002
  • Embankment Piles, which is subjected to damage due to lateral movement of soft ground, can be classified into pile slab, cap beam pile, and isolated cap pile according to the installation pattern of pile cap. In the cap beam pile and the isolated cap pile method, the soil arch is developed by the different stiffness between pile and soil, and most embankment loads are transferred into embankment piles through soil arch. In these two methods, the difference of soil arch is that the soil arch of the cap beam pile method develops like the arch from of tunnel between cap beams and the soil arch of the isolated cap pile method develops like dome between isolated caps. Therefore, theoretical analysis methods on soil arching effect of the cap beam pile and the isolated cap pile method were respectively proposed according to their own arch form considering the limiting equilibrium of stresses in a crown of soil arch. And a series of model tests were performed both to investigate the load transfer by soil arching in fills above embankment piles and to verify the reliability of the theoretical analysis.

Proposed Optimized Column-pile Diameter Ratio with Varying Cross-section for Bent Pile Structures (단일 현장타설말뚝의 변단면 분석을 통한 최적 기둥-말뚝 직경비 제안)

  • Kim, Jaeyoung;Jeong, Sangseom;Ahn, Sangyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1935-1946
    • /
    • 2013
  • In this study, the behavior characteristics of bent pile structures with varying cross-section was examined through the measured results of field load test. A framework for determining the bending stress is calculated based on the stresses in the circumference of the pile using 3D finite element analysis. It is found that the bending stress near the pile-column joint changes rapidly and fracture zones occurs easily at variable cross-sections in bent pile structures. Also, the optimized column-pile diameter ratio was analyzed through the relationship between the column-pile diameter ratio and lateral crack load ratio. Based on this study, the optimized column-pile diameter ratio can be obtained near the inflection point of the curve between the column-pile diameter ratio and lateral crack load ratio. Therefore, a present study by considering the optimized variable cross-section condition would be improved bent pile structures design.

The Use of Piles to Cut Slopes Design in Cohesive Soils (억지말뚝을 이용한 점성토지반 절토사면의 설계)

  • 홍원표;한중근;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.157-170
    • /
    • 1999
  • A new design technique is presented to stabilize cut slopes in cohesive soils by use of piles. The design method can consider systematically factors such as the gradient and height of slope, the number and position of pile's rows, the interval and stiffness of piles, etc. The design method is established on the basis of the stability analysis of slope with rows of piles. The basic concept applied in the stability analysis is that the soil across the open space between piles can be retained by the arching action of the soil, when a row of piles is installed in soil undergoing lateral movement such as landslides. To obtain the whole stability of slope containing piles, two kinds of analyses for the pile-stability and the slope- stability must be performed simultaneously. An instrumentation system has been installed at a cut slope in cohesive soil, which has been designed according to the presented design process. The behavior of both the piles and the soil across the open space between piles is observed precisely. The result of instrumentation shows that the cut slope has been stabilized by the contribution of stabilizing effect of piles on the slope stability in cohesive soil.

  • PDF

Comparison of Performance between Regular Drilled Shaft and Isolation Tube Drilled Shafts (일반 현장 타설 말뚝과 분리형 현장 타설 말뚝의 거동 비교)

  • Kim, Myung-Hak;O'Neill, Michael W.
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.211-220
    • /
    • 2000
  • An experimental study that included detailed observation of four 305-mm-diameter drilled shafts, one reference shaft of standard design and three test shafts with isolation tubes to mitigate skin friction in the vadose zone of a clay soil profile, is described. The shafts were loaded only by naturally expanding and contraction soil over a period of 17 months. The soil at the test site was instrumented to track suction and elevation changes. Maximum ground surface movements exceeding 40 mm were observed. Heave movements of less than 1.5 mm were observed in the test shafts with isolation tubes, while movements of 5 mm were observed in the reference shaft. Unit side shear loads in the shafts protected by the isolation tubes were minimal compared to those measured in the reference shaft. This indicates that the isolation tubes were very effective.

  • PDF

Dynamic Behaviors of Behavior Piles and Countermeasures to Improve Their Seismic Performance Using Shaking Table Tests (진동대 모형실험을 이용한 경사말뚝의 동적 거동 분석과 내진성능 향상을 위한 보강기법 개발)

  • Hwang Jae Ik;Lee Yong Jae;Han Jin Tae;Kim Myoung Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • Shaking table tests are performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance of the batter pile. First of all, this study demonstrates how batter piles and vertical piles behave under static lateral loadings. Secondly, the vulnerability of batter plies under dynamic lateral loadings is demonstrated showing the axial forces and bending moments mobilized at the pile heads during shaking table tests. Thirdly, countermeasures to overcome the vulnerability of behavior piles during earthquakes are pursued. The countermeasures investigated in this study include introduction of a rubber element at the pile head and the deck plate connection, and introduction of hinge connection. Finally, the slope of batter piles which induces the minimum pile forces during the dynamic loadings are investigated and found to be 8:3 (Vertical to Horizontal).

A Study on the Load Bearing Characteristics Depending on Pile Construction Methods and Pile Load Test Methods Based on Case Analyses (사례분석에 기초한 말뚝시공법 및 재하시험방법에 따른 하중지지특성에 관한 연구)

  • Hong, Seok-Woo;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.5-21
    • /
    • 2012
  • In our country, in the case of traditional design of pile foundations, only a design depending on end bearing has been performed. However, through the load transfer measurement data that have been carried out for in-situ piles, it was known that skin frictional force was mobilized greatly. In this study, through the analysis of the load transfer test cases of driven steel pipe piles and large-diameter drilled shafts, load bearing aspects of pile foundation depending on pile construction methods and pile load test methods were established. The average sharing ratios of skin frictional force were independent of pile types, pile load test methods, relative pile lengths, pile diameters and soil types. Because the average sharing ratios were over 50%, the case pile foundations mostly behaved as a friction pile and the extremely partial case pile foundation behaved as a combined load bearing pile.

Experimental Study on the Load Sharing Ratio of G개up Pile (무리말뚝의 하중분담률에 관한 실험적 연구)

  • Kwon Oh-Kyun;Oh Se-Bung;Kim Jin-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.51-58
    • /
    • 2005
  • In this study, the large scale model tests were executed to estimate the Load Sharing Ratio (LSR) of raft in a piled footing under various conditions. The conditions such as the subsoil type, pile length, pile spacing, away type and pile installation method etc. were varied in the pile loading tests about the free-standing group piles and a piled footing. As a result of this study, it was found that there was no difference in the load-settlement curves, resulting from the pile installation method and subsoil type. The piles supported most of the external load until a yielding load of the piled footing, but the raft supported a considerable load after a yielding load. As the relative density of sands increased, the LSR decreased. As the pile spacing was wider and the pile length increased, there was a tendancy for the LSR to increase. But it was also found that the LSR was not affected by the pile installation method and the subsoil type.

Development of Dynamic p-y Curve for Jacked Pile by Centrifuge Test (원심모형 실험을 이용한 압입말뚝에 대한 동적 p-y 곡선 산정)

  • Yoo, Min-Taek;Kwon, Sun-Yong;Lee, Il-Hwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • In this study, dynamic centrifuge tests in dry sand were conducted in order to evaluate the effect of pile installation on the dynamic p-y curve. According to the result of the pile installation effect on the dynamic p-y backbone curves, the subgrade resistance of a jacked pile in 40 g was found to be greater than that of a jacked pile in 1 g and a preinstalled pile in 1 g. It was also found that differences of the subgrade resistance decrease with the depth of the pile. Applicability of dynamic p-y backbone curve for the bored pile proposed by preceded researcher was evaluated by comparing with the result of centrifuge tests. In addition, dynamic p-y backbone curve for jacking/driven pile was developed by modifying that for the bored pile.