• Title/Summary/Keyword: 말뚝변위

Search Result 278, Processing Time 0.022 seconds

A Study on Piled Raft Constructed on Soft Ground through Numerical Analysis (수치해석을 통한 연약지반 상 시공된 Piled Raft 기초의 거동 연구)

  • Kim, Jeonghoon;Kim, Sunkon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2013
  • In this paper, numerical analyses were conducted on piled raft foundation settlement and pile bearing characteristics in soft ground. Results obviously showed longer and larger piles developed end bearing capacity values, but also showed the load of the central pile is larger than the surrounding piles in a group formation. Additionally, after pile yielding, the load carrying capacity exists as a raft. Moreover, results showed no transverse displacement according to embedment depth for the single pile case, but larger transverse displacements for deeper embedment depths.

Application and Verification of Coupled Analysis of Piled Piers (교량 말뚝기초 해석기법의 적용성 분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method (YSGroup) was developed considering nonlinear pile head stiffness matrices and compared with other analytical methods (elastic displacement method, Group 6.0 and FBPier 3.0). In this method, a pile cap was modelled by four-node flat shell element, a pier was modelled using 3 dimensional beam element, and individual piles were modelled as beam-column elements. Through the comparative studies on a piled pie. subjected to lateral loads in linear soil, it was found that present method (YSGroup), elastic displacement method and Group 6.0 gave similar results of lateral pile head displacement, but FBPier 3.0 was estimated to show somewhat larger displacements than those from the three methods. Displacements of superstructure (pier), including nonlinear soil behavior, could be estimated by present method (YSGroup) and FBPier 3.0 because these two methods modelled the superstructure directly by finite element techniques. It was found that pile groups in pinned pile head condition had a tendency to cause excessive rotation of the pile cap.

Permanent Deformations of Piles in Sand Under Cyclic Lateral Loads (모래지반에서 반복수평하중을 받는 말뚝의 영구변형)

  • Paik, Kyu-Ho;Park, Won-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.63-73
    • /
    • 2010
  • Monopiles, used as one foundation option for offshore wind turbines, are usually subjected to great cyclic lateral loads due to wind and wave. In this study, model pile load tests were performed using calibration chamber and three model piles with different pile lengths in order to investigate the behavior of laterally cyclic loaded piles driven into sand. Model test results show that the first loading cycle generates a bigger displacement than the following ones, and the permanent displacement of piles by one loading cycle decreases with increasing the number of cycles. 1-way cyclic loading causes the permanent displacement in the same direction as cyclic loading, whereas 2-way cyclic loading causes the permanent displacement in the reverse direction of initial loading. It is also observed that the permanent displacement of piles due to cyclic lateral loads increases with decreasing relative density of soil and with increasing the magnitude of cyclic loads. However, it is insensitive to the earth pressure ratio of soil and embedded pile length. In addition, based on the model pile load test results, equations for estimation of the permanent lateral displacement and rotation angle of piles due to 1-way cyclic lateral loads are proposed.

Analysis of Sand Compaction Piles Under Flexible Surcharge Loading (연성하중을 받는 모래다짐말뚝(SCP)의 거동분석)

  • 홍의준;김재권;정상섬;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.223-233
    • /
    • 2003
  • Sand compaction pile (SCP) is one of the ground improvement techniques which are being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model tests and 3-D finite element analyses were performed to investigate the interaction between sand compaction piles and surrounding soft soils. Based on the results obtained, as the area replacement ratio increases, the stress concentration ratio increases at the pile point, the settlement decreases, and the relative displacement between column and soil also decreases. It is also found that numerical study is illustrated by good comparison with model test results, and the numerical analysis revealed slip effects which could not be specifically identified in the model tests.

Evaluation of Behaviors in Abutment Transition Zone Depending on Constrution Orders and Number of Piles (뒤채움 시공순서 및 말뚝 수에 따른 교대 접속부 거동평가)

  • Kim, Ung-Jin;Jeong, Rag-Gyo;Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The RAR (Reinforced Abutment for Railways) is an economical abutment to reduce the settlement of a transitional zone and horizontal displacement of an abutment by constructing backfill before the abutment. In this paper, the performance of the RAR depending on the pile installation was evaluated using 2D (Dimensional) finite element analysis and compared with the existing abutment (with 5 rows pile). Numerical analysis showed that increasing pile installation is more effective in reducing horizontal displacement and earth pressure than settlement of the transitional zone. The horizontal displacement and earth pressure of the RAR was approximately 26~37% and 59~83% compared to the existing abutment by changing the pile installation. More pile installation led to a greater reduction of the horizontal displacement and earth pressure of the RAR. In addition, the horizontal earth pressure of RAR is influenced considerably by the reinforcement, pile, foundation, and stiffness of the ground.

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

Dynamic Interaction of Single and Group Piles in Sloping Ground (경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용)

  • Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.5-15
    • /
    • 2020
  • Dynamic behavior of pile foundation is significantly influenced by the dynamic interaction between soil and pile. Especially, in the sloping ground, the soil-pile interaction becomes very complex due to different resistance according to loading direction, soil residual displacement and so on. In this study, dynamic centrifuge tests were performed on the piles in the sloping ground. The model structures consisted of a single pile and 2×2 group pile. The soil-pile interaction has been investigated considering various conditions such as slope, single and group piles, and amplitude of input motions. The phase differences between soil and pile displacement and dynamic p-y curves were evaluated. The analysis results showed that the pile behavior was largely influenced by the kinematic forces between soil and pile. In addition, the dynamic p-y curve showed the complex hysteresis loop due to the effect of slope, residual displacement, and kinematic forces.

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Analysis of the Bearing Capacity of Drilled Shafts Compared with Driven Piles (항타말뚝과 비교한 현장타설말뚝의 지지력분석)

  • Lee, Seong-Jun;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.75-88
    • /
    • 1997
  • In this study an iterative procedure for the analysis of drilled shafts was proposed on the basis of the load transfer mechanism. Special attention was given to the estimation of bearing capacity of drilled shafts which was compared with driven piles, and then with the results of pile load test. The load displacement at the pile head was calculated by load than sfer curves (t -z curves, q-z curves) by using Vljayvergiya, Castelli and hi -linear models. Bab ed on the analytical results, it is found that the behavior of drilled shafts is different from that of driven piles the smaller the skin friction mobilized at the pile-boil interface, the smaller the development of the bearing capacity. Hence the greater pile head movement is required to mobilize the same mainitride of bearing capacity. This trend is more noticeable in sand than in clay. It is also found that as the length-todiameter ratios increase, the dirtference of ultimate bearing capacity between drilled shafts and driven piles is becoming lass ger in sand, but it is minor in clay.

  • PDF

Effect of tunneling under a bridge on pile foundation behavior mechanism (교량 직하부에 시공되는 터널에 의한 말뚝기초의 거동변화)

  • Choi, Go-Ny;Woo, Seung-Je;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.51-69
    • /
    • 2011
  • This paper presents the effect of tunneling on bridge pile foundation being operated using three-dimensional numerical modeling. Also the parametric study on the depth of tunnel of which the diameter was 10 m was carried out in order to evaluate the behaviors of pile foundation due to the tunnel excavation. This paper expresses the changes of vertical and horizontal displacement, movement of soil and stress of the pile. Based on the results obtained from the numerical analysis some insights into the changes of pile foundation behaviors due to variations of tunneling location were mentioned and discussed.