• Title/Summary/Keyword: 만곡

Search Result 612, Processing Time 0.018 seconds

Changes in Temperature and Light Distribution in the Rice Crop Canopy at the Different Growth Stages (수도군락내(水稻群落內) 온도(溫度) 및 광분포(光分布)의 시기별(時期別) 변화(變化))

  • Lee, Jeong-Taek;Jung, Yeong-Sang;Ryu, In-Soo;Kim, Byung-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.108-113
    • /
    • 1984
  • To find out the differences in micro-meteorological changes in the rice plant canopy at the different growing stages, Seokwang-byo, a high yielding variety, was cultivated with three planting densities of 50, 80 and 110 hills per $3.3m^2$ in 1982, and Seokwangbyo and Chucheong-byo, a local variety, were planted with a density of 80 hills per $3.3m^2$. Air temperature in plant canopies, water and soil temperatures were continuously monitored throughout the growing period. The relationship between solar radiation interception and leaf area indices at different height in the canopy also was studied. The results were as follows: 1. Air temperature in the densely planted canopy was 1 to $1.5^{\circ}C$ higher than that in the sparsely planted one at the early growing stage, but was inverted after 60 days of transplanting. The vertical distribution of temperature in the canopies showed that air temperature at 10 cm height from the ground was higher than that at 30 cm height. The temperature inversion occurred showing lower temperature at the 10 cm height than at the 30 cm height. 2. The highest temperature of a day in the canopy occurred at 14:00 to 15:00 Korean Standard Time same as that of air temperature, but approached to the solar noon time as the plants grew thick. 3. The air temperature in the canopy became higher than water temperature when the leaf area indices were 4.6 for Chucheongbyo and 5.2 for Seokwangbyo, and the light penetration ratios were 40 percents. 4. Light extinction coefficients of the 50 to 70 cm layer of the canopies were 0.3 to 0.5 but decreased at the lower layers. 5. Albedo of the canopies was 0.4 in the morning and evening while that was about 0.25 at noon. The difference in albedo between Seokwangbyo and Chucheongbyo could be recognized with the difference in leaf structure.

  • PDF

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF