• Title/Summary/Keyword: 만곡

Search Result 611, Processing Time 0.022 seconds

Inundation Analysis in Urban Area Considered Head Loss Coefficients of Curved Pipes (만곡부 관거의 손실 계수를 고려한 도시 지역의 침수 해석)

  • Won, Changyeon;Park, Jongpyo;Jun, Hwan Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.201-201
    • /
    • 2017
  • 서울시 효자배수분구(광화문 지역)는 2010년, 2011년 호우로 인해 침수 피해가 많이 발생했던 지역으로 당시 주요 침수피해 원인은 광화문 사거리 및 경복궁역 인근에 위치하고 있는 굴곡 관로의 손실수두 증가(유입, 만곡, 마찰손실 등), 지하매설물로 인한 통수단면 감소 등으로 조사되었다. 따라서 대상지역의 침수 원인을 정확히 분석하기 위해서는 관거의 만곡, 급 확대 및 급 축소에 따른 손실계수의 적용이 요구된다. 손실계수는 유입부, 만곡부에 대한 계산식을 이용하여 산정하고 모형에 적용하였으며 적정 손실계수 값을 얻기 위해 손실계수에 대한 민감도 분석을 수행하였다. 모의 검토 대상기간은 우수관거내 수심 측정자료가 존재하는 4개의 이벤트를 선정하였으며 같은기간에 해당하는 AWS 매분단위 강우자료를 취득하여 모의에 적용하였다. 또한, 적정 손실계수를 선정하기 위해 관측치와 모의치의 적합도를 평가하였으며, 평가지표는 자료 개수에 관계없이 절대적으로 평가할 수 있는 NSE(Nash-Sutcliffe Efficiency)를 사용하였다. 손실계수 적용 여부에 따른 분석결과 손실계수를 적용한 모의치가 관측치의 오차가 미적용한 모의치보다 적합도의 평가지표가 우수하게 분석되었다. 손실계수 민감도 분석 결과는 경험식에 의해 산정된 손실계수를 적용한 Case3의 NSE가 가장 우수하게 분석되었다. 이와같이 도시 지역의 침수분석에 있어 우수관거에 대한 손실계수 적용으로 분석모형의 정밀도를 높일 수 있는 것으로 판단된다.

  • PDF

THE CHANGE OF CANAL CONFIGURATION AFTER INSTRUMENTATION BY SEVERAL NICKEL-TITANIUM FILES IN THE SIMULATED CANAL WITH ABRUPT CURVATURE (수종의 엔진구동형 니켈-타이타늄 파일에 의한 급한 만곡의 근관 성형시 근관형태 변화에 대한 비교연구)

  • Lim, Jung-Jang;Kim, Dong-Jun;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2005
  • The purpose of this study was to evaluate which type of Ni-Ti files are able to maintain canal configuration better in the simulated canal with abrupt curvature near it's apex. Ninety six simulated root canals were made in epoxy resin and $\sharp$15 finger spreader was used as root canal templates. The simulated root canals were made with radius of curvature of 1.5mm, 3.0mm, 4.0mm, 6.0mm respectively and the angle of curvature of all simulated canals were adjusted to 90 degree. The simulated canals were instrumented by ProFile, ProTaper, Hero 642, and $K^3$ at a 300 rpm using crown-down pressureless technique. Pre-instrumented and post-instrumented images were taken by digital camera and were superimposed with Adobe Photos hop 6.0 program. Images were compared by image analysis program. The changes of canal width at the inner and outer side of the canal curvature. canal transportation were measured at 9 measuring point with 1 mm interval. Statistical analysis among the types of Ni-Ti files was performed using Kruskal-Wallis test and Mann-Whitney U-test. The result was that ProFile maintain original canal configuration better than other engine driven Ni-Ti files in the canals above 3.0mm radius of curvature, and in the 1.5mm radius of curvature, most of Ni-Ti flies were deformed or separated during instrumentation.

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.

Mechanistic Analysis Modeling for the 3-D Chip Formation Process (3-D 칩생성과정의 역학적 해석 모델링)

  • Kim, Gyeong-U;Kim, U-Sun;Kim, Dong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.163-168
    • /
    • 2000
  • Once the chip has developed a mixed mode of side-curl and up-curl, it would generally curl to strike the tool flank. The development of the bending stresses and sheat in the chip would ultimately lead to chip failure. This paper approach this problem from a mechanics-based approach, by treating the chip as a 3-D elastic curved beam, and applying appropriate constraints and forces. The expressions for bending, shear and direct stresses are developed through an energy-based criterion. The location of the maximum stresses is also identified and explained for simulated test conditions.

  • PDF

Flow Characteristics and Transverse Bed Slope in Curved Alluvial Channels (만곡 수로의 횡방향 하상경사와 흐름특성)

  • 차영기;이대철
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.99-107
    • /
    • 1991
  • This study is for simulating to the model which analyzes flow characteristics and transverse bed slopes in a coarse-streambed of the meandering alluvial channels. Using the equations for conservation of mass, momentum, and for lateral stability of the streambed, a linear differential equation of transverse bed slope is derived from the flow characteristics in curved channels. Its solutions are solved by the Sine-generated curve method(SCM) and compared with results of field measurements. Lag distances by the maximum transverse bed slope and velocity profiles will predict risk sections of concave bank under floods.

  • PDF

Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River (만곡하천의 자갈하상재료 분포에 따른 한계수류력 평가)

  • Shin, Seung-Sook;Park, Sang-Deok;Lee, Seung-Kyu;Ji, Min-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.151-163
    • /
    • 2012
  • The distribution of gravel-bed materials in mountainous river is formed by the process of deposition and transportation of sediment responding to stream power of the latest flood that is over the certain scale. The particle size of bed material was surveyed in the longitudinal points of river and detail points of a specific meandering section and used to estimate the critical velocity and stream power. Yang's critical unit stream power and Bagnold's critical stream power for gravel-bed materials increased with the distance from downstream to upstream. Dimensionless shear stress based on the designed flood discharge in Shields diagram was evaluated that the gravel-bed materials in most survey points may be transported as form of bedload. The mean diameter in the meandering section was the biggest size in first water impingement point of inflow water from upstream and the second big size in second water impingement point by reflection flow. The mean diameters were relatively the small sizes in points right after water impingement. The range of mean critical velocity was 0.77~2.60 m/s and critical unit stream power was big greatly in first water impingement point. The distribution of critical stream power, range of 7~171 $W/m^2$, was shown that variation in longitudinal section was more obvious than that of cross section and estimated that critical stream power may be affected greatly in first and second water impingement point.

Applicability Evaluation on the Analytical Formulas of the Scour Depth Estimation in the Bight River (교량세굴심 산정을 위한 만곡부하천에서의 산정식 적용성 평가)

  • Park, Soo-Jin;Park, Jae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4845-4852
    • /
    • 2012
  • This research calculated the scour depth of bridge according to inflow and outflow changes of stream's flood discharge and curves by applying scour depth formula for piers and abutments, and by comparing and examining them, evaluated the applicability of scour depth formulas. Overall, if the angles of flood discharge and inflow and outflow increase, the deviation rate of scour depth in bight increased. Especially the deviation rate was 58% at the inflow and outflow angle of $105^{\circ}$ that the bridge plan for this geography need careful examination. Next, as a result of calculating the deviation rate of scour depth at the bight by scour depth formulas, in case of pier, Andru formula showed 58% deviation rate, Laursen formula showed 26% deviation rate, and CSU. formula showed 17% deviation rate. In the case of abutment, Froehlich formula shows 44% deviation rate that when applying above scour depth formulas, scour depth calculation considering repairable characteristics of bight is necessary. Finally, about inflow and outflow angles of $45^{\circ}{\sim}135^{\circ}$ that showed big deviation rate of scour depth, this research performed regression analysis of deviation rates of scour depth due to flood discharge to suggest the regression formula.

Study on Applicability of River Revetment Design for consideration of Velocity Variation due to Meandering and Scour Effect (만곡 및 세굴 영향에 의한 유속변화를 고려한 호안설계방법 적용성 검토)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.17-25
    • /
    • 2016
  • Revetments help protect levee slopes from erosion. If the design of the revetment is not appropriate, the levee may collapse as a result of scouring due to the strong flow velocity and tractive force. Therefore, when designing a revetment, it is very important to calculate the representative velocity. However, the average velocity and depth calculated by 1-D varied flow analysis are generally applied to the design, which do not reflect the increase in velocity caused by the free and force vortex. Therefore, it is necessary to correct the representative velocity in order to ensure the stability of the revetment in a meandering channel. In this study, the applicability of the method of calculating the representative velocity considering the curve and scour was studied (by comparing it with) the average and maximum velocities determined by numerical simulation. The representative velocity corrected for the effect of the curve and scour and the maximum velocity calculated by the numerical simulation were found to match quite well. In addition, the riprap size of the gabion in the meandering and straight channels were compared by applying them to the conventional design formulas. In the future, it is necessary to perform additional numerical simulations for various rivers with different characteristics, in order to propose a method of designing a suitable revetment for Korean characteristics. At this time, the results of this study are expected to be able to be used as basic data.

A Study on Stability of Levee Revetment in Meandering Channel (만곡수로 내의 호안 안정성 연구)

  • Kim, Sooyoung;Yoon, Kwang Seok;Kim, Hyung-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1077-1087
    • /
    • 2015
  • The levee protect lifes, houses, and properties by blocking overflow of river. The revetment is forced to be covered on the slope of levee in order to prevent erosion. The stability of revetment is very important enough to directly connected to the stability of levee. In this study, the weak points of revetment on meandering channel were found by movable revetment experiment and the velocity and the water surface elevation (WSE) were measured at main points. The 3-D numerical simulations were performed under same conditions with experiment. And unclear flow characteristics by the limit of measuring instruments were analyzed through numerical simulation. Consequently, the section of large wall shear stress and the failure section are almost the same. Despite of small wall shear stress, the revetments located at right bank were carried away because of circulation zone due to secondary flow by meandering. With existing riprap design formula, the sizes of riprap determined using maximum local velocity were 1.5~4.7 times greater than them using mean velocity. As a result of this study, it is necessary to calculate the size of riprap in other ways for meandering and straight channel. At a later study, if the weighted value considered the radius of curvature and shape of hydraulic structure is applied to riprap design formula, it is expected that the size of revetment was evaluated rationally and accurately.

Maturation of cervical vertebrae in relation to menarche (초경 전후 경추골 성숙도에 관한 연구)

  • Lee, Jin-Hwa;Kang, Yoon-Goo;Lee, Ki-Soo;Nam, Jong-Hyun
    • The korean journal of orthodontics
    • /
    • v.39 no.1
    • /
    • pp.28-35
    • /
    • 2009
  • Objective: The purpose of this study was to investigate the relationship between menarche and cervical vertebral maturation. Methods: Lateral cephalograms of 67 young korean girls within the range of 1 year before or after their menarche were gathered. The concavity of the cervical vertebrae base and the ratio of the base length to the 3rd and 4th cervical vertebrae anterior height were measured and analyzed. Results: The mean measured values were as follows, concavity of the 3rd cervical vertebrae base: 1.27(${\pm}0.18$) mm, concavity of the 4th cervical vertebrae base: 1.06(${\pm}0.15$) mm, ratio of the base length to the 3rd cervical vertebrae anterior height: 0.73(${\pm}0.06$) and ratio of the base length to the 4th cervical vertebrae anterior height: 0.70(${\pm}0.05$). There was a significant increase in the ratio of the base length to the 3rd vertebrae anterior height and the base concavity of the 3rd and 4th cervical vertebrae during the period of 1 year before to 1 year after their menarche. Conclusions: These characteristics of the 3rd and 4th cervical vertebrae on the lateral cephalogram can provide useful clues on evaluating the growth stage.