• Title/Summary/Keyword: 막 레이놀즈수

Search Result 13, Processing Time 0.015 seconds

Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical Inner Tube (2nd. Report, Characteristics of Heat Transfer) (수직관내(垂直管內)를 흘러내리는 액막식(液膜式) 흡수기(吸收器)의 흡수(吸收) 및 열전달특성(熱傳達特性)(제(第)2보(報) 열전달특성(熱傳達特性)))

  • Ohm, K.C.;Rie, D.H.;Choi, G.G.;Kasiwagi, Takao;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.257-264
    • /
    • 1993
  • This is the second report of a three part study on the absorption and heat transfer characteristics of absorber, the correlation of refrigerating capacity and heating capacity. The 2nd report deals with the heat transfer characteristics of a vertical falling film type absorber of inner copper tube. The solute is LiBr-Water solution(60wt%) and the solvent is water vapor. The film Reynoles numbers are varied in the range of 35~130. The states of LiBr solution at the top of absorber are supercooled liquid and superheated liquid. The results are summarized as follows ; Heat transfer results reveal that for the absorption of falling film, the state of LiBr solution appears to be influential in determining the heat transfer. Thus, for the state of supercooled liquid, heat transfer coefficient decreases with increasing the film Reynolds number, but in the condition of superheated liquid, it increases conversely. The mass transfer coefficients that were presented in the 1st.report and heat transfer coefficients of this paper are presented as the dimensionless correlation. The optimum water flowrate which brings about maximum value of heat flux in the film exists, and that increases with increasing the cooling water temperature.

  • PDF

An Improved Heat Transfer Prediction Model for Turbulent Falling Liquid Films with or Without Interfacial Shear (계면 전단응력이 있을 때와 없을 때 하강하는 난류액막에 대한 개선된 열전달 예측 모델)

  • Park, Seok-Jeong;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.189-202
    • /
    • 1995
  • An improved method is presented for the prediction of heat transfer coefficients in turbulent fall-ing liquid films with or without interfacial shear for both heating or condensation. A modified Mudawwar and El-Masri's semi-empirical turbulence model, particularly to extend its use for the turbulent falling film with high interfacial shear, is used to replace the eddy viscosity model incorporated in the unified approach unposed by Yih and Liu. The liquid film thickness and asymptotic heat transfer coefficients against the film Reynolds number for wide range of interfacial shear predicted by both present and existing methods are compared with experimental data. The results show that in general, predictions of the modified model agee more closely with experimental data than that of existing models.

  • PDF

The Experimental Study on the Heat Transfer of HFC134a for Condensation Tubes with Various Enhanced Surfaces (응축전열관 외부형상 변화에 따른 HFC134a의 열전달 실험)

  • Park Chan-Hyoung;Lee Young-Su;Jeong Jin-Hee;Kang Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this paper are to study the characteristics of heat transfer for enhanced tubes (19.05 mm) used in the condenser with high saturation temperatures and to provide a guideline for optimum design of a condenser using HFC134a. Three different enhanced tubes are tested at a high saturation temperature of $59.8^{\circ}C$ (16 bar); a low-fin and three turbo-C tubes.. The refrigerant, HFC134a is condensed on the outside of the tube while the cooling water flows inside the tube. The film Reynolds number varies from 130 to 330. The wall subcooling temperature ranges from $2.7^{\circ}C$ to $9.7^{\circ}C$. This study provides experimental heat transfer coefficients for condensation on the enhanced tubes. It is found that the turbo-C(2) tube provides the highest heat transfer coefficient.