• Title/Summary/Keyword: 막힘 효과

Search Result 58, Processing Time 0.03 seconds

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.

Verifying Rehabilitation and Evaluation of Bedrock Wells using Air-brush Surging and Explosive Methods (공기-브러쉬와 폭약 세척 방법에 의한 암반관정의 세척 효과 검증)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Han, Suk-Jong;Ok, Soon-Il;Cha, Eun-Jee;Cho, Heuy-Nam;Choo, Chang-Oh;Kim, Moo-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.369-379
    • /
    • 2011
  • The application of appropriate rehabilitation works can improve productivity and water quality of clogged wells, with extending the operation of the wells for a certain period. This study verified rehabilitation effect of the clogged wells by means of explosive method and air brush surging and by using hydraulic tests, water quality, and geophysical logs (optical and acoustic televiewer logs) before and after the cleaning works on the two wells drilled in bedrock in Mt. Geumjeong, Busan City. Air-brush surging method resulted in maximum 273% increase of the productivity with the concentration of $F^-$, $SiO_2$, and a decrease of turbidity and the concentration of $Cl^-$, $NO_3^-$. The explosive method resulted in maximum 156% increase of the productivity with an increase of the concentration of $F^-$, $SiO_2$ and a decrease of turbidity, $Cl^-$, $NO_3^-$.

Therapeutic Efficacy and Complications of Automated Peritoneal Dialyzer in Dogs with Renal Failure (신부전 개에서 자동 복막투석기를 이용한 복막투석에 대한 평가)

  • Kwon, Heejung;Choi, Wonjin;Lee, Dong-Guk;Tan, David;Hyun, Changbaig
    • Journal of Veterinary Clinics
    • /
    • v.32 no.5
    • /
    • pp.399-403
    • /
    • 2015
  • Peritoneal dialysis (PD) is a treatment for renal failure and acute poisoning, and uses the patient's peritoneum in the abdomen as a membrane across which fluids and dissolved substances are exchanged from the blood. In this study, we evaluated the therapeutic efficacy and complications of automated peritoneal dialyzer (APD) in dogs with renal failure. PD was performed in 10 dogs using a swan neck catheter (Neonatal, Coviden) and automatic APD. The efficacy for each dog was assessed by calculating urea reduction ratio (URR) and creatinine reduction ratio (CRR). Mean concentrations of pre-dialysis creatinine and blood urea (BUN) were $7.09{\pm}3.84$ and $145.8{\pm}48.5$, respectively. The mean number of peritoneal dialysis cycles applied was $6{\pm}1$ cycles. Peritoneal dialysis resulted in a significant decrease in BUN concentration in 7/10 dogs, while a significant decrease in creatinine concentration in 9/10 dogs. The mean of URR was higher than that of CRR ($0.39{\pm}0.16$ vs $0.38{\pm}0.13$). The mean CRR and URR per dialysis cycles were $0.064{\pm}0.023$ and $0.065{\pm}0.023$, respectively. Complications found in this study were catheter occlusion, subcutaneous dialysate leakage, septic peritonitis, hypoalbuminemia and overhydration. This study found PD using a swan neck catheter and APD machine showed acceptable efficacy for successful peritoneal dialysis in dogs. However, close monitoring is required to minimize the risk of complication.

Ballast water Treatment using a Multistage Filter (다단 디스크 여과장치를 이용한 선박 밸러스트수 처리)

  • Park, Sang-Ho;Lim, Jae-Dong;Kim, In-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.79-83
    • /
    • 2006
  • Displayed result that handle particle contaminant and hydrospace organism included in number of ballast that is happened in ship using automatic bade washing filter. Reason that remove first contaminant that is included in number of ballast is that heighten processing effect of after processing process. of the filter. Another advantage is to drop off the solids with controlling revolution of drum screen in pretreatment filtration process. The fact that it is easy to attach and detach a several type of screen for getting the expected water quality is another advantage. Filter rotation speed at 1.0rpm is filter resistance 3.0bar and 3.0rpm is filter resistance 2.8bar. Filter out impurities from ballast water over 6.0rpm is filter resistance 26bar and 10rpm is filter resistance 2.5bar. Filtration system removal aquatic organism over $80{\mu}m$ in ballast water. This study shows that the filtration treatment system has a potential for the treatment of ballast water.

  • PDF

Metal Corrosion Mechanism by Sulfate-reducing and Iron-oxidizing Bacteria in Saline System and its Optimal Inactivation (염수계 철산화균 및 황환원균에 의한 금속 부식 및 최적 제어 방안)

  • Sung, Eun-Hae;Han, Ji-Sun;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.798-807
    • /
    • 2008
  • Due to economic impairment derived from metal corrosion of pumping station installed around coastal area, it was needed for related cause-effect to be investigated for understanding practical corrosion behavior and providing proper control. This research was thus carried out to determine whether the microbe can influence on metal corrosion along with its control in the laboratory. For this study, groundwater was sampled from the underground pump station(i.e. I Gas Station) where corrosion was observed. Microbial diversity on the samples were then obtained by 16S rDNA methods. From this, microbial populations showing corrosion behaviors against metals were reported as Leptothrix sp.(Iron oxidizing) and Desulfovibrio sp.(Sulfur reducing) Iron oxidizing bacteria were dominantly participating in the corrosion of iron, while sulfate reducing bacteria were more preferably producing precipitate of iron. In case of galvanized steel and stainless steel, iron oxidizing bacteria not only enhanced the corrosion, but also generated its scale of precipitate. Sulfate reducing bacteria had zinc steel corroded greater extent than that of iron oxidizing bacteria. In the inactivation test, chlorine or UV exposure could efficiently control bacterial growth. However as the inactivation intensity being increased beyond a threshold level, corrosion rate was unlikely escalated due to augmented chemical effect. It is decided that microbial corrosion could be differently taken place depending upon type of microbes or materials, although they were highly correlated. It could be efficiently retarded by given disinfection practices.

Treatment of Textile Wastewater by Membrane-Bioreactor Process (막-생물반응조 공정을 이용한 염색폐수의 처리)

  • 강민수;김성수;황규대;강종림
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.60-61
    • /
    • 1996
  • 염색폐수를 처리하기 위하여, 일반적으로 물리.화학적 공정과 호기성 생물학적 공정을 조합한 방법들을 사용하고 있다. 하지만 호기성 생물학적 공정은 난분해성 물질의 제거능력이 낮고, 염색폐수의 주된 오염원인 염료분자가 호기성 미생물에 대한 에너지원으로 적합하지 않아 분해되기 어려우며, 물리.화학적 공정을 이용한 처리방법으로도 높은 처리효율을 얻을 수가 없다. 이러한 문제점을 극복하기 위하여 염색폐수 처리에 혐기-호기공정을 이용하며, 혐기성 공정에서 생물학적으로 분해되기 어려운 고분자 물질들을 가수분해하여 생물학적으로 분해가능한 저분자물질로 전환시키고, 호기성 공정에서 저분자 물질을 효과적으로 처라할 수 있기때문에 기존의 염색폐수 처리공정에 비하여 훨씬 높은 처리효율을 얻을 수 있다. 특히, 혐기성 미생물은 호기성 미생물에 비하여 난분해성 물질에 대한 분해력이 높고, 생물독성 물질에 대한 내성이 강하기 때문에 수중생물에 유해한 염료를 함유한 염색폐수의 색도제거에 효과적인 것으로 기대된다. 또한, 막분리 공정은 유기물 및 미생물이 막표면에 축적, 증식함으로써 막세공에 막힘현상을 초래하여 역세척 등의 물리적인 방법이나 화학약품을 이용한 화학적 세척 방법으로도 투과플럭스의 회복이 불가능한 상태를 유발함으로 막의 수명을 단축시키는 원인이 된다. 따라서, 혐기-호기공정과 조합하면 색도성분 제거 및 막 오염의 원인이 되는 유기물 및 용존성 고형물을 제거하고, 막 오염의 억제를 통한 후 수염의 연장은 물론, 처리수의 수질향상에 활용될 수 있을 것으로 사료된다.1로 강구와 함께 공구강 vial에 장입 후, Spex mixer/mill을 이용하여 기계적 합금화 하였다. 기계적 합금화 공정으로 제조한 분말에 대한 X-선 회절분석과 시차 열분석으로 합금화 정도를 분석하였다. (Bi1-xSbx)2Te3 및 Bi2(Te1-ySey)3 합금분말을 10-5 torr의 진공중에서 300℃∼550℃의 온도로 30분간 가압소결하였다. 가압소결체의 파단면에서의 미세구조를 주사전자현미경으로 관찰하였으며, 상온에서 가압소결체의 열전특성을 측정하였다. (Bi1-xSbx)2Te3의 기계적 합금화에 요구되는 공정시간은 Sb2Te3 함량에 따라 증가하여 x=0.5 조성에서는 4 시간 45분, x=0.75 조성에서는 5 시간, x=1 조성에서는 6 시간 45분의 vibro 밀링이 요구되었다. n형 Bi2(Te1-ySey)3 합금분말의 제조에 요구되는 밀링시간 역시 Bi2Se3 함량 증가에 따라 증가하였으며 Bi2(Te0.95Se0.05)3 합금분말의 제조에는 2시간, Bi2(Te0.9Se0.1)3 및 Bi2(Te0.85Se0.15)3 합금분말의 형성에는 3시간의 bivro 밀링이 요구되었다. 기계적 합금화로 제조한 p형 (Bi0.2Sb0.8)2Te3 및 n형 Bi2(Te0.9Se0.1)3 가압 소결체는 각기 2.9x10-3/K 및 2.1x10-3/K 의 우수한 성능지수를 나타내었다.ering)가 필수적이다. 그러나 침전법에서 얻게 되는 분말은 매우 미세하여 colloid를 형성하게 되며, 이러한 colloid 상태의 미세한 침전입자가 filte

  • PDF

Mitigations of Natural Organic Matter Fouling of Polyethersulfone Microfiltration Membrane Enhanced by Deposition of $TiO_2$ Nanoparticles ($TiO_2$ 나노입자로 표면침적된 Polyethersulfone 정밀여과 분리막의 자연유기물 파울링 감소)

  • Chang, Jung-Woo;Ahn, Kyung-Min;Kim, Ki-Hyun;Khan, Sovann;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.120-126
    • /
    • 2010
  • In this study, the effect of surface deposition of $TiO_2$ nanoparticles at polyethersulfone (PES) microfiltraiton (MF) membrane on humic acid fouling was investigated. The effect was observed as a function of crystal structures of $TiO_2$ nanoparticles and solution chemistries including pH and divalent cation such as calcium. Our results showed clearly that $TiO_2$-deposited membrane could mitigate membrane fouling significantly. However, this effect was observed to be dependent upon crystal structures of $TiO_2$ nanoparticles and solution chemistries. In the absence of calcium, fouling mitigation was less pronounced for both anatase and hybrid $TiO_2$-deposited membrane than for rutile $TiO_2$-deposited membrane while opposite trend was observed after addition of calcium. In the presence of calcium, the adsorption of humic acid to $TiO_2$-deposited membrane can be reduced by electrostatic repulsions between humic acid and $TiO_2$ surface. Addition of calcium provided further beneficial effect on fouling mitigation particularly at higher pH for the anatase $TiO_2$ deposited membrane, implying that both increased hydrophilicity due to $TiO_2$ nanoparticles and negative surface charge of the membrane should affect fouling mitigation. However, rutile $TiO_2$ having more inertness generally than the anatase $TiO_2$ showed relatively robust effect on the fouling mitigation regardless of solution properties.

Agricultural Radial Collector Wells in South Korea and Sustainability (한국의 농업용 방사상 집수정 현황 및 지속가능성)

  • Hong, Soun-Ouk;Song, Sung-Ho;An, Jung-Gi;Kim, Jin-Sung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Radial collector wells (RCWs) have been managed by Korea Rural Community Corporation (KRC) since 1983, installing 98 wells for agriculture in rural area over the country. Among them, 20 wells were installed upstream of 5 subsurface dams and the remaining were installed regardless of the subsurface dam. Most of RCWs have been developed in 1980s and 1990s, and 83 wells have been passed more than 20 years after construction. The number of horizontal arms for RCWs varies from 9 to 28, with length and diameter being 10~30 m and 65 mm, respectively. The central caisson with an inner diameter of 3.5 m was commonly constructed to a depth of 10 m. The maximum pumping rates in RCWs, which are located at distances of 10 to 1,200 m from the river, are 2,000~10,000 m3/day. RCW has a fundamental problem that reduced pumping capacity and degraded well efficiency, due to the physical and chemical clogging. From the feasibility test for improving RCW performance, specific capacity increased to 67% after rehabilitation. TV logging for RCW horizontal arm shows that near the caisson is more severe clogging. From the results of this study, KRC has established the guidebook for monitoring and improving well efficiency through physical/chemical treatment, well logging, and hydraulic tests and managed RCWs periodically with its rehabilitation methods.

Field Applicability of Scale Prevention Technologies for Drainage Holes (배수공 내 스케일 생성 방지 기술의 현장 적용성 평가)

  • Chu, Ickchan;Lee, Jonghwi;Kim, Hyungi;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.45-51
    • /
    • 2012
  • The calcium hydroxide$(Ca(OH)_2)$ which is the cement hydrate flowed into the tunnel by groundwater is reacted with microorganism in the soil, carbon dioxide$(CO_2)$ and the vehicle's exhaust gas$(SO_3)$. So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. By this phenomenon, Degradation of water flow at the drainage system of the tunnel occurred and also pore water pressure is increased. Hence the acceleration of seepage and degradation of lining is occurred. The purpose of this study is to evaluate the field applicability of the Quantum Stick and Magnetic treatment in prevention of scale deposits at the Namsan ${\bigcirc}{\bigcirc}$ tunnel and the Zone ${\bigcirc}{\bigcirc}{\bigcirc}$ of subway. These technologies were installed into drainpipes with their performance monitored through occasional site visits. SEM and XRD were also performed on scale collected from these drainpipes. As a result, in case which factor technology is applied, scale creation is remarkably decreased and especially Quantum Stick treatment performing better than Magnetic treatment. Therefore, additional application of Quantum Stick or Magnetic treatment to the existing drainage is expected to decrease the drainage clogging of the drainage.

Determination of Optimum Stepped Vacuum Pressure and Settlement for IVPM-applied Ground (개별진공압공법이 적용된 지반의 최적 단계진공압 산정 및 침하예측)

  • Yoon, Myung-Seok;Ahn, Dong-Wook;Park, Jea-Man;Kim, Soo-Sam
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Individual Vacuum Pressure Method (IVPM) is a soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and to strengthen the soft ground. This method does not require surcharge loads, different to embankment or pre-loading method. In this study, the ground improvement efficiency of Individual Vacuum Pressure Method was estimated when suction pressure increases step by step(-20, -40, -60, -80kPa) with different periods. During Individual Vacuum Pressure Method process, surface settlement and pore pressure were monitored, and cone resistance as well as water content were also measured after the completion of Individual Vacuum Pressure Method treatment. From the results, optimum duration of each step of vacuum pressure was determined, and the settlement was calculated using FEM numerical analysis.