• Title/Summary/Keyword: 막장압 예측

Search Result 7, Processing Time 0.015 seconds

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.

Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock (화강풍화대를 통과하는 슬러리 TBM의 체적손실 산정에 대한 사례 연구)

  • Park, Hyunku;Oh, Ju-Young;Chang, Seokbue;Lee, Seungbok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • This paper presents a case study on the ground settlement and volume loss estimation for slurry pressure balanced shield TBM tunnelling in weathered zone of granite rock. Settlement at each stage of shield tunnelling was analyzed and the volume losses and settlement trough factors were estimated from observations. In addition, using the existing volume loss evaluation method in literature, volume losses were estimated considering ground properties and actual driving parameters. Most of ground settlement occurred during passage of shield skin passage and after backfill grouting, and the measured total volume loss and trough curves appeared to coincide with literature. Shield and tail loss obtained from field measurement were found to be around 90% and 60% of the predictions, where tail loss indicated larger deviation than shield loss.

Suggestion of empirical formula between FPI and specific energy through analysis of subsea tunnel excavation data (해저 터널 굴진자료 분석을 통한 FPI와 비에너지의 경험식 제시)

  • Kim, Kyoung-Yul;Bae, Du-San;Jo, Seon-Ah;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • The construction of subsea tunnel differs from that of inland tunnel because of high water pressure due to sea water level and difficulties to reinforce the ground under construction. Therefore, it is very important to prevent trouble in advance when the subsea tunnel is constructed. In this paper, we established lots of databases about characteristics of geological and mechanical parameters on the construction of subsea tunnel using micro slurry TBM which depth is about 60 m. The correlation analysis is conducted to confirm the effect of thrust, torque and RPM among the excavation database on the net penetration rate. Also, An empirical formula is suggested to predict the net penetration rate through the correlation analysis between FPI (Field Penetration Index) and specific energy from the subsea tunnel excavation database.

Development for prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment (선진시추장비와 시추공벽 영상화 장비를 이용한 TBM 전방 지반평가시스템 개발)

  • Kim, Ki-Seog;Kim, Jong-Hoon;Jeong, Lae-Chul;Lee, In-Mo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.393-401
    • /
    • 2015
  • In the construction of a TBM tunnel, it is very important to acquire accurate information of the excavated rock mass for an efficient and safe work. In this study, we developed the prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment to predict rock mass conditions of the tunnel face ahead. The prediction system consists of the probe drilling equipment, drilled hole imaging equipment and analysis software. The probe drilling equipment has been developed to be applicable to both non-coring and coring. Also the probe drilling equipment can obtain the drilling parameters such as feed pressure, torque pressure, rotation speed, drilling speed and so on. The drilling index is converted to the drilling index RMR through the correlation between a drilling index and core RMR. The developed system verification was carried out through a slope and tunnel field application. From the field application result, the non-coring is four times faster than a coring and the drilling index RMR and core RMR are similar in the distribution range. This system is expected to predict the rock mass conditions of the TBM tunnel face ahead very quickly and efficiently.

Assessment of Rock Mass Properties Ahead of Tunnel Face Using Drill Performance Parameters (천공데이터를 활용한 터널 막장 전방 암반특성 평가)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Chang, Soo-Ho;Seo, Kyeong-Won;Lee, Seung-Do
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.67-77
    • /
    • 2007
  • The drill monitoring data are useful for the detection of abrupt and unexpected changes in ground renditions. This paper introduces a new approach to how drill performance parameters can be used for the prediction of quantitative rock mass properties ahead of tunnel face and the blasting design. The drill monitoring parameters available for the predictions include the instantaneous advance speed, thrust force, torque, tool pressure and penetration rate. The assessment of the drill monitoring parameters will be able to build a database provided that in-situ drill monitoring informations are accumulated and enable us to make a reasonable blast design based on quantitative assessment of rock mass.

A preliminary study for numerical and analytical evaluation of surface settlement due to EPB shield TBM excavation (토압식 쉴드 TBM 굴착에 따른 지반침하 거동 평가에 관한 해석적 기초연구)

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jung Joo;Kim, Kyoung Yul;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.183-198
    • /
    • 2021
  • The EPB (Earth Pressure Balanced) shield TBM method restrains the ground deformation through continuous excavation and support. Still, the significant surface settlement occurs due to the ground conditions, tunnel dimensions, and construction conditions. Therefore, it is necessary to clarify the settlement behavior with its influence factors and evaluate the possible settlement during construction. In this study, the analytical model of surface settlement based on the influence factors and their mechanisms were proposed. Then, the parametric study for controllable factors during excavation was conducted by numerical method. Through the numerical analysis, the settlement behavior according to the construction conditions was quantitatively derived. Then, the qualitative trend according to the ground conditions was visualized by coupling the numerical results with the analytical model of settlement. Based on the results of this study, it is expected to contribute to the derivation of the settlement prediction algorithm for EPB shield TBM excavation.