• Title/Summary/Keyword: 막장볼트

Search Result 15, Processing Time 0.015 seconds

Stability Analysis of the Spillway Tunnel Located on the Granite Region Including Fault Fractured Zone (단층파쇄대를 포함한 화강암지역의 여수로 터널 안정성 분석)

  • Han, Kong-Chang;Ryu, Dong-Woo;Kim, Sun-Ki;Bae, Ki-Chung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.58-68
    • /
    • 2008
  • The construction of an emergency spillway of Imha Dam is being in progress on the granite region including fault fractured zone. Considering that this tunnel is being excavated in three paralled rows, the pillar width between each tunnel and the face distance between each tunnel face were evaluated. The Influence of the fault fractured zone for the tunnel stability was investigated by numerical modelling in 3D. Various geophysical investigations and rock engineering field tests were carried out for these purposes. It was suitable that the second tunnel would be excavated in advance, maintaining the face distance between each tunnel face of minimum 25 m. The results of numerical modelling showed that the roof displacement and the convergence of the second tunnel were insignificant, and the maximum bending compressive stress, the maximum shear stress of shotcrete and the maximum axial force of rockbolt were also insignificant. Therefore, it was estimated that the stability of the spillway tunnel was ensured.

A Study on the Quantitative Evaluation of the Load Distribution Factors Considering the Design Conditions of Tunnel Especially for the Ring-cut Excavation Method (터널 설계조건을 고려한 하중분배율의 정량적 산정에 관한 연구 -ring-cut 굴착공법을 중심으로-)

  • 장석부;문현구
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.5-16
    • /
    • 1998
  • 2-D numerical methods have been applied to analyze the stability of tunnels because of computation efficiency, though the ground around the tunnel under construction shows 3-D reformational behaviour due to the transverse and longitudinal arching effects. Load distribution factors are introduced to the 2-D analysis for the consideration of the effects of the tunnel advance in three dimensions. The load distribution factors influence significantly the ground deformation and the load of primary supports like shotcrete and rockbolts. According to the previous studies for 3-D numerical studies. it was shown that load distribution factors were heavily dependent on the ground deformational properties, tunnel size and the advance length of a tunnel. However, as the quantitative methods evaluating the factors have not been presented yet, constant values have been assigned to the factors for 2-D analysis even if the conditions for tunnel design are different. Accordingly, this paper presents the method to evaluate quantitatively the load distribution factors through the regression analysis of 3-D analysis data on 72 design cases. Also, new modification to the load distribution factors are suggested for the ring-cut excavation method because the conventional 2-D analysis is not able to consider the support effects of the core left on the tunnel face.

  • PDF

Auxiliary Reinforcement Method for the Safety of Tunnelling Face (터널 막장안정성에 따른 보강공법 적용)

  • Kim, Chang-Yong;Park, Chi-Hyun;Bae, Gyu-Jin;Hong, Sung-Wan;Oh, Myung-Ryul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.11-21
    • /
    • 2000
  • Tunnelling has been created as a great extent in view of less land space available because the growth of population in metropolitan has been accelerated at a faster pace than the development of the cities. In tunnelling, it is often faced that measures are obliged to be taken without confirmation for such abnormality as diverged movement of surrounding rock mass, growing crack of shotcrete and yielding of rockbolts. In this case, it is usually said that the judgments of experienced engineers for the selection of measure are importance and allowed us to get over the situations in many construction sites. But decrease of such experienced engineers need us to develop the new system to assist the selection of measures for the abnormality without any experiences of similar tunnelling sites. In this study, After a lot of tunnelling reinforcement methods were surveyed and the detail application were studied, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river. This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

A numerical study on the analysis of behavior characteristics of inclined tunnel considering the optimum direction of steel rib (강지보재 최적 설치방향을 고려한 경사터널의 거동특성에 대한 수치해석적 연구)

  • Park, Sang-Chan;Kim, Sung-Soo;Shin, Young-Wan;Shin, Hyu-Soung;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2008
  • The steel rib, one of the main support of tunnel, plays a very important role to stabilize tunnel excavation surface until shotcrete or rockbolt starts to perform a supporting function. In general, a steel rib at the horizontal funnel is being installed in the direction of gravity which is known favorable in terms of constructability and stability. However, as the direction of principal stress at the inclined tunnel wall is different from that of gravity, the optimum direction of steel rib could be different from that at the horizontal tunnel. In this study, a numerical method was used to analyze the direction of force that would develope displacement at the inclined tunnel surface, and that direction could be the optimum direction of steel rib. The support efficiency of steel rib could be maximized when the steel rib was installed to resist the displacement of the tunnel. Three directions which were recommended for the inclined tunnels in the Korea Tunnel Design Standard were used for the numerical models of steel rib direction. In conclusion, the results show that all displacement angle of the models are almost perpendicular to the tunnel surface regardless of face angle. So if the steel rib would be installed perpendicular to the inclined tunnel surface, the support efficiency of steel rib could be maximized.

  • PDF

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.