• Title/Summary/Keyword: 막온도

Search Result 1,458, Processing Time 0.029 seconds

Dehydration of Alcohol Solutions through Crosslinked Chitosan Composite Membranes - I. Preparation of Chemically Crosslinked Chitosan Composite Membranes and Ethanol Dehydration - (가교키토산 복합막을 통한 알콜수용액의 탈수 - I. 화학적가교를 통한 복합막의 제조와 에탄올의 탈수 -)

  • 이영무;남상용;오부근;이병렬;우동진;이규현;원장묵;하백현
    • Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • Chitosan composite membranes were prepared by casting chitosan solution onto porous polysulfone ultrafiltration membrane. Composite membranes to separate water from aq. ethanol solution were chemically crosslinked by using various crosslinking agent, glyoxal, terephthalaldehyde and glutaraldehyde. The morphology of surface crosslinked chitosan composite membranes were examined by scanning electron microscopy. ATR-FTIR was employed to confirm the crosslinking mechanism of surface crosslinked chitosan composite membranes. In the case of glutaraldehyde, optimum separation factor and decreasing trend of flux were shown.

  • PDF

Consideration of Optimized Thickness of Dielectric Layers in Miniaturization of Microwave Devices and Application of Aerosol Deposition Method (마이크로파 소자의 소형화에 있어서 유전체 막의 최적화 두께에 대한 고찰 및 Aerosol Deposition Method의 적용)

  • Kim, Yoon-Hyun;Lee, Dae-Seok;Lee, Ji-Won;Choi, Yoon-Seok;Lee, Young-Jin;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.349-349
    • /
    • 2008
  • 유비쿼터스 시대를 맞이하여 현재의 전자제품은 고주파 환경에서의 소형화된 마이크로파 소자를 요구하고 있다. 현재 구현되고 있는 마이크로파 소자의 형태는 여러 가지 전송선로 중에 하나로서 금속의 그라운드면 위에 유전체 막을 형성하고 그 위에 금속선을 정밀하게 패터닝하여 각 종 소자를 연결하는 microstrip line의 형태가 많이 사용된다. 이러한 microstrip line 형태의 소자를 설계할 시에 소자 자체의 구조나 유전체 막이 그 소자의 성능을 크게 좌우한다. 여기서 유전체 막은 신호선과 그라운드면 간의 전자파를 집중시켜주어 방사손실을 줄여주는 역할을 한다. 유전체 막의 두께는 소자의 전체적인 크기를 결정하는 요인이 된다. 이는 유전체 막의 두께가 감소할 경우 50 $\Omega$ 임피던스 매칭을 위해 막 위에 형성되는 소자들의 선폭도 동시에 줄여야 하므로 소자의 소형화도 가능 하여진다. 하지만 유전체 막의 두께가 감소할 경우 전자파가 유전체 막에 집중되지 못하여 방사손실이 커지게 되고 소자의 성능이 저하된다. 이런 점을 고려할 때 소자의 소형화를 만족시키면서 동시에 소자의 성능을 유지할 수 있는 유전체 막의 최적화 두께에 대한 연구가 필요하다. 볼 연구에서는 유전체 막의 최적화 두께를 제시하기 위해 대표적 마이크로파 소자인 Edge-Coupled Filter에 대하여 3-D Electromagnetic Simulator로 설계하고 유전체 막의 두께와 Filter 성능 간의 관계를 연구하였다. Filter의 성능은 유지하도록 하면서 유전체 막의 두께를 감소시켜 나간 결과, 약 30 ~ 40 ${\mu}m$ 의 최적화 두께를 얻을 수 있었다. 한편 30 ~ 40 ${\mu}m$ 두께의 후막 공정을 고려할 때 기존의 성막공정으로는 성막시간, 공정의 난이도, 공정온도 등의 면에서 난점이 존재하며 이러한 점들을 극복할 수 있는 Aerosol Deposition Method의 적용 가능성에 대해서 연구하였다.

  • PDF

A Study on Water Uptake Behavior and Properties of Pervaporation PVA Membrane (투과증발 PVA 분리막의 물 흡수 거동 및 물성 연구)

  • 김광제;박인준;김동권;이수복
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.74-80
    • /
    • 1995
  • Asymmetric poly(vinyl alcohol) (PVA) membranes were prepared by varying the precipitation conditions of the phase inversion technique, and the influences of precipitation conditions on the water uptake of the membrane were investigate. The degree of water uptake of the membrane increased and reached a certain maximum value, as the precipitation time increased. However, it decreded after that. As the precipition temperauure became lower, the degree of water uptake increased more or less. The addition of a nonionic surfactant to the precipitaon solution was effective reducing the precipitation time by lowering the surface tension of the precipitation solution, but ig didn't change the maximum value of its own degree of water uptake. In addition, the relationship between the degree of water uptake and the separation characteristics and mechanical properies of the membrane were investigated. The selectivity factor of the membrane for pervaperation separation decreased, but the permeate flux increased, respectively, with increasing the degree of water uptake. The tensile strength and elongation of the membrane, respectively, increased to a maximum value with increasing the degree of water uptake, and then decreased abtuptly.

  • PDF

The Study on Optimum Operation Conditions of Ceramic MF Membrane Process in Y Water Treatment Plant (Y 정수장 세라믹막 여과공정 최적 운영인자 평가)

  • You, Sang-Jun;Ahn, Hyo-Won;Park, Sung-Han;Lim, Jae-Lim;Hong, Sung-Chul;Yi, Pyong-In
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.201-212
    • /
    • 2014
  • This study was performed to discover the optimum operation conditions for the advanced water treatment using the ceramic membrane, introduced the first in the nation at the Y water treatment plant (WTP). The result of investigation to find the optimum operation conditions which can continue preserving the filtration performance as well as satisfying both the economics and the water quality is as follows. In the ordinary water quality condition of the Y WTP, the optimum filtration time(the backwash period), which can minimize the production of backwash waste and preserve the membrane performance was examined to be 4.0 hours on basis of institution capacity ($16,000m^3/day$). Examining the recovery rate of TMP from the chemical cleaning (CIP) discovered that the inorganic contaminants, which cause membrane fouling, such as iron, manganese, aluminum, were removed through the acidic cleaning using citric acid, whereas the membrane recovery rate was found to be low. But, on the other hand, the TMP was recovered to the initial value from the alkali cleaning using the NaOCl. Therefore, the main contaminant causing the fouling was determined to be hydrophilic organic compound( biopolymer). The membrane recovery rate is highly influenced by the temperature of the cleaning chemical. That is, the rate increased with increasing temperature.

Polymeric Materials for Pervaporation Membranes (투과증발막을 위한 고분자 재료)

  • 제갈종건;이규호
    • Membrane Journal
    • /
    • v.7 no.4
    • /
    • pp.157-166
    • /
    • 1997
  • 고분자를 크게 두가지로 대별해 보면 유리상 고분자(Glassy polymer)와 고무상 고분자(Rubbery polymers) 혹은 일레스토머로 나눌수가 있으며 이는 고분자의 유리전이온도(Glass transition temperature)에 따른 분류이다. 즉 유리전이온도가 상온 보다 높아 상온에서 유리상인 고분자를 유리상 고분자라 하고 유리전이온도가 상온보다 낮아서 상온에서 고무상인 고분자를 고무상 고분자라 한다. 이들 두 종류 고분자는 화학적 구조, 화학적 성질, 그리고 물리적 성질면에 있어서 상당히 다르다.

  • PDF

The Evaluation of Temperature Effect on Nitrogen RemovaI at Intermittent MBR System by Computer Simulation (컴퓨터 시뮬레이션을 이용한 간헐폭기 MBR공정에서의 운전온도 변화에 따른 질소제거 성능 평가)

  • Lee, Byonghi;Park, Min-Jung
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.489-501
    • /
    • 2012
  • The nitrogen removal characteristics of the MBR system consisted of two intermittent reactors, a membrane reactor and a deaeration reactor under constant flow and wastewater composition at different operational temperature and SRTs (Sludge Retention Times) were studied by computer simulation. The nitrogen removal efficiencies were dropped from 59% to 31%, when operational temperature was increased to $25^{\circ}C$ from $13^{\circ}C$ with same SRT of 25 days. Lower RBO (Readily Biodegradable Organic) concentrations at intermittent reactors at $25^{\circ}C$ compared with those at $13^{\circ}C$ of operational temperature were believed to be the main cause. The nitrogen removal efficiencies and RBO concentrations at each intermittent reactors were recovered when SRT was reduced to 12.6 days at $25^{\circ}C$. The effect of both SRT and operational temperature on RBO concentrations at intermittent reactors is need to be studied further.

Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향)

  • Lee, Mihwa;Oh, Sohyeong;Park, Yujun;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • In the membrane forming process of a proton exchange membrane fuel cell (PEMFC), drying and annealing heat treatment processes are required for performance and durability. In this study, the optimal annealing temperature for improving the durability of the polymer membrane was studied. It was annealed in the temperature range of 125~175 ℃, and thermal stability and hydrogen permeability were measured as basic data of durability at each annealing temperature. The electrochemical durability was analyzed by Fenton reaction and open circuit voltage (OCV) holding. The annealing temperature of 165 ℃ was the optimal temperature in terms of thermal stability and hydrogen permeability. In the Fenton reaction, the fluorine emission rate of the membrane annealed at 165 ℃ was the lowest, and the lifespan of the membrane annealed at 165 ℃ was the longest in the OCV holding experiment, confirming that 165 ℃ was the optimal temperature for the durability of the polymer membrane.

Characterization of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 특성)

  • Kwon, Ji-Young;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility has been combined with lactide, the ester dimer of polylactide, with good biodegradability to produce biocompatible materials which can control the period of degradation in a human body. By freeze frying method, HA and lactide were crosslinked with crosslinking agent, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Degree of lactide and EDC reaction was determined by the analysis of nuclear magnetic resonance spectroscopy. Both lactyl group and EDC conversion increased as the mole ratio of lactide to HA increased from 5 to 13. The membrane swelled less and became more brittle with the more addition of lactyl group resulting from the higher mole ratio of lactide to HA. Swelling ratio decreased and tensile modulus increased due to the more addition of lactyl group as the EDC concentration increased or reaction temperature decreased. Drug release experiment from various membranes with different degree of crosslinking showed that permeability decreased with increasing degree of crosslinking. The degradation became slower with the more addition of lactyl group. Mechanical property and degradation rate of the synthesized membrane were shown to be controlled through adjusting operation parameters such as mole ratio, temperature, and crosslinking agent concentration.

Partial Oxidation of Methane in Palladium-silver Alloy Membrane Reactor (팔라듐-은 막반응기를 이용한 메탄의 부분산화반응)

  • Choi, Tae-Ho;Kim, Kwang-Je;Moon, Sang-Jin;Suh, Jung-Chul;Baek, Young-Soon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.641-647
    • /
    • 2005
  • The partial oxidation of methane is one of important processes for hydrogen production. As a membrane reactor, palladium-silver (Pd-Ag) alloy membrane prepared by electroless plating technique was employed for partial oxidation of methane. The experimental variables were reaction temperature, $O_2/CH_4$ mole ratio, $CH_4$ feed rate, and $N_2$ sweep gas flow rate. The methane conversions increased with the reaction temperatures in the range of 350 to $730^{\circ}C$. The highest methane conversion and CO selectivity were obtained at the condition of $O_2/CH_4$ mole ratio of 0.5 and $730^{\circ}C$ using commercially available nickel/alumina catalyst. The Pd-Ag membrane reactor showed higher methane conversions, 10~40% higher, compared to those in a traditional reactor.

Modelling and Simulation of H2 separation in Pd Membrane System with Co-current and Current-current Flow (병류와 향류 흐름에서 수소분리를 위한 Pd 분리막 시스템의 모델링 및 모사)

  • Yi, Yong;Noh, Seunghyo;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.598-602
    • /
    • 2010
  • In this paper, we carried out CFD modelling and simulation for the membrane system to separate H2 gas from the multi-component feed gas. The membrane system is of the annulus tubular type consisting of the external lumen side for the feed gas and the internal permeation side for the sweeping gas. The operating temperature and pressure of the lumen side inlet flow are $374^{\circ}C$ and 7 bar respectively and those of the sweeping gas are $374^{\circ}C$ and 3 bar, and considering these conditions, Pd membrane system was employed. CFD simulations were performed for the co-current flow and counter-current flow membrane system based on the flow directions between the feed and the sweeping gas. Comparisons and discussions were made for the H2 partial pressure, H2 mole fraction and H2 flux for both cases. Furthermore, we executed CFD simulations for the each case of the various inlet flow rates of the feed gas at the lumen side. Accordingly, we reviewed the effects of the flow rate and residence time on the performance of the membrane system.