• Title/Summary/Keyword: 막결합형 생물반응기

Search Result 4, Processing Time 0.021 seconds

The Effect of Media on the Removal Efficiency and Filtration Performance in the Submerged Membrane-Coupled Sequencing Batch Reactor with Media (담체가 첨가된 침지형 막결합 연속회분식 반응기에서 제거효율과 여과성능에 대한 담체의 효과)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.450-460
    • /
    • 2012
  • In the submerged membrane-coupled sequencing batch reactor (MSBR) with sponge type media, the effect of media on the removal efficiency and filtration performance were investigated. Dosages of the media in the MSBR were set of 5%, 10%, and 20% based on working volume of reactor. As a control system, the MSBR without media was also operated. The experimental results showed that there was also no difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosages of the media. But TMP (transmembrane pressure) of the MSBR with media increased slowly during the operation time, while that of the MSBR without media increased rapidly at the initial operation. This result was thought that the collisions between flat membrane and moving media gave shear forces which decreased the cake layer on the surface of flat type membrane. Consequently, this study showed that filtration performance of the MSBR with media was greatly enhanced compared with that of the MSBR without media. The MSBR with media suggested in this study can be a good candidate for the wastewater treatment.

Application of high voltage pulse for reduction of membrane fouling in membrane bio-reactor and kinetic approach to fouling rate reduction (막결합형 생물반응기(Membrane Bio-Reactor)의 막 오염 저감을 위한 고전압 펄스의 적용과 막 오염 저감 속도론적 해석)

  • Kim, Kyeong-Rae;Kim, Wan-Kyu;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.183-190
    • /
    • 2020
  • Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.

Study of membrane fouling in the crossflow MBR system (교차흐름 막결합형 생물반응기에서의 막오염 연구)

  • 최중구;김인철;최남석;홍서표;탁태문
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.150-152
    • /
    • 1998
  • Now the lack of water is serious problem all over the world because of the growth of population and expansion of industrial activities. So wastewater recycle and reuse is essential in many countries. One of the most popular wastewater treatment processes is conventional activated sludge system. In spite of significant degree of treatment rate the biological process has some operational difficulties and capital disadvantages. In conventional activated sludge process, sludge settling condition is getting worse in case of sludge bulking, it is common that overall process fails due to wash-out of biomass causing low concentration of MLSS in the aeration tank. Because of the absence of claifier the membrane bioreactor(MBR) process is less affected by such problems.

  • PDF

The Effect of Filling Step on the Removal Efficiency and Filtration Performance in the Operation of Submerged Membrane-Coupled Sequencing Batch Reactor (침지형 막결합 연속회분식 반응기의 운전에서 폐수의 도입단계가 제거효율과 여과성능에 미치는 영향)

  • Kim, Seung-Geon;Lee, Ho-Won;Kang, Yeung-Joo
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.263-269
    • /
    • 2011
  • In the operation of submerged membrane-coupled sequencing batch reactor, the effect of filling step on the removal efficiency and filtration performance were investigated. Two sets of operation modes, the filling step located in the beginning of aerobic step (Mode-1) and the beginning of anoxic step (Mode-2), during 89 days were conducted. There was no wide difference in the COD removal and filtration performance between two sets of operation modes. But in the removal efficiency of nutrients (total nitrogen and total phosphorous), Mode-2 was more effective than Mode-1. In the case of Mode-2, average removal efficiencies of COD, total nitrogen, and total phosphorous were 99.1, 73.3, and 77.3%, respectively.