• Title/Summary/Keyword: 마커 차단 문제

Search Result 2, Processing Time 0.021 seconds

A Robust Marker Detection Algorithm Using Hybrid Features in Augmented Reality (증강현실 환경에서 복합특징 기반의 강인한 마커 검출 알고리즘)

  • Park, Gyu-Ho;Lee, Heng-Suk;Han, Kyu-Phil
    • The KIPS Transactions:PartA
    • /
    • v.17A no.4
    • /
    • pp.189-196
    • /
    • 2010
  • This paper presents an improved marker detection algorithm using hybrid features such as corner, line segment, region, and adaptive threshold values, etc. In usual augmented reality environments, there are often marker occlusion and poor illumination. However, existing ARToolkit fails to recognize the marker in these situations, especially, partial concealment of marker by user, large change of illumination and dim circumstances. In order to solve these problems, the adaptive threshold technique is adopted to extract a marker region and a corner extraction method based on line segments is presented against marker occlusions. In addition, a compensating method, corresponding the marker size and center between registered and extracted one, is proposed to increase the template matching efficiency, because the inside marker size of warped images is slightly distorted due to the movement of corner and warping. Therefore, experimental results showed that the proposed algorithm can robustly detect the marker in severe illumination change and occlusion environment and use similar markers because the matching efficiency was increased almost 30%.

Valproic Acid-induced PPAR-alpha and FGF21 Expression Involves Survival Response in Hepatocytes (Valproic acid에 의해 증가하는 PPAR-alpha 및 FGF21의 발현이 간세포 생존에 미치는 영향)

  • Bakhovuddin Azamov;Yeowon Kang;Chanhee Lee;Wan-Seog Shim;Kwang Min Lee;Parkyong Song
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.227-235
    • /
    • 2024
  • Hepatocyte damage caused by medications or herbal products is one of the important problem when these compounds are chronically administrated. Thus, improving hepatocyte survival during treatment offers a wide range of opportunities. Valproic acid (VPA), a branched short-chain fatty acid derived from naturally occurring valeric acid, is commonly used to treat epilepsy and seizures. Although VPA exerts numerous effects in cancer, HIV therapy, and neurodegenerative disease, its effects on the liver and its mechanism of action have not been fully elucidated. Here, we demonstrated that VPA caused moderate liver cell toxicity and apoptosis. Interestingly, VPA treatment increased transcription levels of PPAR alpha (PPAR-α) and fibroblast growth factor 21 (FGF21) in murine (Hepa1c1c7) hepatoma cells in a time and concentration dependent manner. VPA-induced FGF21 expression was significantly weaker under PPAR-α silencing condition than in cells transfected with non-targeting control siRNA. Subsequent experiments showed that cell viability was significantly lowered when the FGF21 signaling pathway was blocked by FGF receptor antagonist. Finally, we further determined that AMPK phosphorylation was not responsible for VPA-induced FGF21 expression and PPAR-a increments. These results indicate that increases of FGF21 expression alleviate VPA-induced hepatic toxicity, thereby making FGF21 a potential biomarker for predicting liver damage during VPA treatments.