• Title/Summary/Keyword: 마커 검출

Search Result 127, Processing Time 0.027 seconds

A Real-time Augmented Reality System using Hand Geometric Characteristics based on Computer Vision (손의 기하학적인 특성을 적용한 실시간 비전 기반 증강현실 시스템)

  • Choi, Hee-Sun;Jung, Da-Un;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.323-335
    • /
    • 2012
  • In this paper, we propose an AR(augmented reality) system using user's bare hand based on computer vision. It is important for registering a virtual object on the real input image to detect and track correct feature points. The AR systems with markers are stable but they can not register the virtual object on an acquired image when the marker goes out of a range of the camera. There is a tendency to give users inconvenient environment which is limited to control a virtual object. On the other hand, our system detects fingertips as fiducial features using adaptive ellipse fitting method considering the geometric characteristics of hand. It registers the virtual object stably by getting movement of fingertips with determining the shortest distance from a palm center. We verified that the accuracy of fingertip detection over 82.0% and fingertip ordering and tracking have just 1.8% and 2.0% errors for each step. We proved that this system can replace the marker system by tacking a camera projection matrix effectively in the view of stable augmentation of virtual object.

Game-type Recognition Rehabilitation System based on Augmented Reality through Object Understanding (증강현실 기반의 물체 인식을 통한 게임형 인지 재활 시스템)

  • Lim, Myung-Jea;Jung, Hee-Woong;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.93-98
    • /
    • 2011
  • In this paper, we propose a game type cognitive rehabilitation system using marker-based augmented reality system for intelligence development of user. Existing cognitive rehabilitation with the help of others, or a keyboard or mouse operation required to relieve the discomfort, the marker card only control it led and is advanced the method which it applied. As a result, obtained through the camera calibration for image processing, and a Augmented Reality as well as mark detection. In this paper we presented a complete rotation of the model after checking through the whole form, through a combination of multiple markers by completing the interactive objects proceed with the rehabilitation process in a manner required by the target of interest to human rehabilitation and treatment.

Flying Disc Golf Path-Tracing System Using Smart-Marker (스마트마커 연동 원반골프 경로 추적 시스템)

  • Choi, Chang-Hee;Lim, Jea-Yun;Choi, Kyung-wha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1942-1949
    • /
    • 2016
  • This paper proposed automatic path-tracing methods for Flying Disc Golf by adopting IoT comcepts at smart-marker. We tried to implement service system by making database. Smart-marker's configurations & roles are proposed. By making test-boards and adoption to various Flying Disc Golf games, the efficiency is proved. The positions and distances captured by the smart-marker are transferred to the smart-pole per each hole. The smart-pole captured them and transfers to web-server which is databased them. The result can be searched by web or smartphone in real time.

Development of Cultural Content using a Markerless Tracking-based Augmented Reality (마커리스 트래킹 기반 증강현실을 이용한 문화콘텐츠 개발)

  • Lee, Young cheon
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.90-95
    • /
    • 2016
  • Recently, the quality of cultural experience can be improved through a stereoscopic information service provided by the latest mobile-based Information Telecommunication technology without the human cultural commentators, which was used in order to enhance the understanding of our cultural heritage. The purpose of this paper is to produce contents that introduce cultural heritage using the Android-based GPS and augmented reality. In this paper we propose a culture content creation method that is based on location information such as user/cultural anomalies using GPS and augmented reality based on Markerless Tracking. Marker Detection Technology and Markerless Tracking Technology are used for smart phone's rapid recognition of augmented real world and accurate recognition according to the state of the cultural heritage. Also, the Google Map of Android is used to locate the user. The strength of this method lies in that it can be used for a variety of subjects while the existing methods are limited to certain kinds of augmented reality contents.

Use of Microsatellite Markers Derived from Genomic and Expressed Sequence Tag (EST) Data to Identify Commercial Watermelon Cultivars (수박 시판 품종의 식별을 위한 Genomic과 Expressed Sequence Tag (EST)에서 유래된 Microsatellite Marker의 이용)

  • Kwon, Yong-Sham;Hong, Jee-Hwa;Kim, Du-Hyun;Kim, Do-Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.737-750
    • /
    • 2015
  • This study was carried out to construct a DNA profile database for 102 watermelon cultivars through the comparison of polymorphism level and genetic relatedness using genomic microsatellite (gMS) and expressed sequence tag (EST)-microsatellite (eMS) markers. Sixteen gMS and 10 eMS primers showed hyper-variability and were able to represent the genetic variation within 102 watermelon cultivars. With gMS markers, an average of 3.63 alleles per marker were detected with a polymorphism information content (PIC) value of 0.479, whereas with eMS markers, the average number of alleles per marker was 2.50 and the PIC value was 0.425, indicating that eMS detects a lower polymorphism level compared to gMS. Cluster analysis and Jaccard's genetic distance coefficients using the unweighted pair group method with arithmetic average (UPGMA) based on the gMS, eMS, and combined data sets showed that 102 commercial watermelon cultivars could be categorized into 6 to 8 major groups corresponding to phenotypic traits. Moreover, this method was sufficient to identify 78 out of 102 cultivars. Correlation analysis with Mantel tests for those clusters using 3 data sets showed high correlation ($r{\geq}0.80$). Therefore, the microsatellite markers used in this study may serve as a useful tool for germplasm evaluation, genetic purity assessment, and fingerprinting of watermelon cultivars.

Landslide Prediction with Angle of Repose Prediction Using 3D Spatial Coordinate System and Drone Image Detection (3차원 공간 좌표 시스템과 드론 영상 검출을 활용한 산사태 안식각 예측에 관한 연구)

  • Yong-Ju Chu;Soo-Young Lim;Seung-Yop Lee
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.77-84
    • /
    • 2023
  • Forest fires are representative natural disasters resulting from dramatic global climate change in these modern times. When forest formation is insufficient due to forest damage caused by fire, secondary damages such as landslides occur during the winter thawing period and heavy rains. In most countries, only a limited area is managed as CCTV-centered monitoring systems for forest management. For the landslide prediction, markers containing 3D spatial coordinates were located on the slopes of the danger areas in advance. Then 3D mapping and angle of repose were obtained by periodic drone imaging. The recognition range and angle of view of markers were defined, and a new method for predicting signs of landslides in advance was presented in this study.

Development of SSR markers for classification of Flammulina velutipes strains (팽이버섯 (Flammulina velutipes) 계통의 분류를 위한 SSR 마커개발)

  • Woo, Sung-I;Seo, Kyoung-In;Jang, Kab yeul;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2017
  • Microsatellite SSR markers were developed and utilized to reveal the genetic diversity of 32 strains of Flammulina velutipes collected in Korea, China, and Japan. From the SSR-enriched library, 490 white colonies were randomly selected and sequenced. Among the 490 sequenced clones, 85 (17.35%) were redundant. Among the remaining 405 unique clones, 201 (49.6%) contained microsatellite sequences. We used 12 primer pairs that produced reproducible polymorphic bands for four diverse strains, and these selected markers were further characterized in 32 Flammulina velutipes strains. A total of 34 alleles were detected using the 12 markers, with an average of 3.42 alleles, and the number of alleles ranged from two to seven per locus. The major allele frequency ranged from 0.42 (GB-FV-127) to 0.98 (GB-FV-166), and values for observed ($H_O$) and expected ($H_E$) heterozygosity ranged from 0.00 to 0.94 (mean = 0.18) and from 0.03 to 0.67 (mean = 0.32), respectively. SSR loci amplified with GB-FV-127 markers gave the highest polymorphism information content (PIC) of 0.61 and mean allele number of five, whereas for loci amplified with GB-FV-166 markers these values were the lowest, namely 0.03 and two. The mean PIC value (0.29) observed in the present study with average number of alleles (3.42). The genetic relationships among the 32 Flammulina velutipes strains on the basis of SSR data were investigated by UPGMA cluster analysis. In conclusion, we succeeded in developing 12 polymorphic SSRs markers from an SSR-enriched library of Flammulina velutipes. These SSRs are presently being used for phylogenetic analysis and evaluation of genetic variations. In future, these SSR markers will be used in clarifying taxonomic relationships among the Flammulina velutipes.

Augmented Reality System using Planar Natural Feature Detection and Its Tracking (동일 평면상의 자연 특징점 검출 및 추적을 이용한 증강현실 시스템)

  • Lee, A-Hyun;Lee, Jae-Young;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • Typically, vision-based AR systems operate on the basis of prior knowledge of the environment such as a square marker. The traditional marker-based AR system has a limitation that the marker has to be located in the sensing range. Therefore, there have been considerable research efforts for the techniques known as real-time camera tracking, in which the system attempts to add unknown 3D features to its feature map, and these then provide registration even when the reference map is out of the sensing range. In this paper, we describe a real-time camera tracking framework specifically designed to track a monocular camera in a desktop workspace. Basic idea of the proposed scheme is that a real-time camera tracking is achieved on the basis of a plane tracking algorithm. Also we suggest a method for re-detecting features to maintain registration of virtual objects. The proposed method can cope with the problem that the features cannot be tracked, when they go out of the sensing range. The main advantage of the proposed system are not only low computational cost but also convenient. It can be applicable to an augmented reality system for mobile computing environment.

Realtime Processing for Marker Tracking in Smart-Phone Environment Using Deformable Searching Area (스마트폰 환경하의 실시간 처리를 위한 가변 탐색영역을 이용한 마커 추적 방법)

  • Kim, Se-Hoon;Lim, Sung-Jun;Lee, Min-Ho;Kim, Gye-Yuong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.542-546
    • /
    • 2009
  • This paper introduces a Mixed-Reality based Software technology in Smart-Phone Environment. The field of Mixed-Reality in mobile environment is relatively young. but Cause to develop Mobile infra and improvement of mobile device, open-platform mobile OS, the request extended This paper suggest the method for Marker Detection and Marker Tracking method. This method is the one of some kind of a base-technology in Mixed Reality. this method is to effect to location and registration. This paper suggest the method in low CPU computing power. Using a deformable searching area, the method improve computing power. and Using a Cam-shift algorithm, we suggest a calibration free method.

  • PDF