• Title/Summary/Keyword: 마찰식 발전소자

Search Result 2, Processing Time 0.017 seconds

A Development of Energy Storage Monitoring System Architecture for Triboelectric Nanogenerator in the Implant Environment (임플란트 환경에서 TENG 소자를 고려한 효율적인 에너지 저장 모니터링 시스템 개발)

  • Park, Hyun-Moon;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.473-480
    • /
    • 2018
  • In 2012, a new energy capturing method called TENG was suggested for energy harvesting applications. The TENG which captures electric energy in forms of friction or vibration has been researched as a new energy harvesting generation device. However, TENG works on rather high voltage and yields relatively low current, and this requires additional energy conversion and saving methods with either in semiconductive elements or circuitry for its application. Irregular generation from vibration sources rattle under 5Hz especially requires empirical studies. In this article, we suggest a electricity generation platform with energy storage methods. The platform is mounted on large sized animals, and the generation is actively monitored and controlled via Bluetooth-Low Energy to verify the platform.

Development of Energy Harvesting Technologies Platform for Self-Power Rechargeable Pacemaker Medical Device. (자가발전 심장박동기를 위한 에너지 수확 플랫폼 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Kim, Byunng-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.619-626
    • /
    • 2019
  • The advances of semiconductor and circuitry technology dovetailed with nano processing techniques have further enhanced micro-miniaturization, sensitivity, longevity and reliability in MID(Medical Implant Device). Nevertheless, one of the remaining challenges is whether power can sufficiently and continuously be supplied for the operation of the MID. Self-powered MID that harvest biomechanical energy from human motion, respiratory and muscle movement are part of a paradigm shift. In this paper, we developed a rechargeable pacemaker through self-power generation with the triboelectric nanogenerator. We demonstrate a fully implanted pacemaker based on an implantable triboelectric nanogenerator, which act as a storage as well as active movement on a large-animal(dog) scale. The self-power pacemaker harvested from animal motion is 2.47V, which is higher than the required pacemaker device sensing voltage(1.35V).