• Title/Summary/Keyword: 마찰비

Search Result 1,141, Processing Time 0.027 seconds

A study on the sliding rigid indentor over the viscoelastic layer supported by the elastic half-space (탄성체로 기대된 점잔성체층에서의 강성체의 운동해석)

  • Nam, J. W.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.56-63
    • /
    • 1983
  • 강성체로된 견인물체가 탄성무한경면으로 지지된 점탄성층 위를 미끄러져 갈 때 접촉구간에서의 압력분포와 마찰 특성을 고찰하였다. 즉, 접촉구간에서의 강성체의 모양과 압력분포에 관한 적분 방정식을 구하고, 점탄성층의 두께가 접촉구간에 비하여 충분히 두꺼울 때 압력분포와 마찰계 수의 근사해를 구하였다. 압력분포의 모양은 점탄성층의 물성을 표시하는 지수값, 즉 .alpha.<1/2, .alpha.=1/2, .alpha.>1/2에 따라서 크게 다르다. 한편, 수치해석에 의하면 마찰 계수에 대한 근 사해는 강성체의 미끄럼 속도, 점탄성 층의 두께, 탄성체의 영율 (E$_{o}$ )과 점탄성층의 시효 성탄성계수 (E$_{v}$ )의 차, 즉 E$_{o}$ /E$_{v}$ 에 따라 변화함을 알 수 있다. 즉, 탄성체가 점탄성층에 비하여 딱딱하면 할수록, 또 강성체 속도가 느리면 느릴수록 마찰계수는 작아진다. 그리고 불성의 지수(.alpha.)가 커지면 커질수록 근사해의 수렵 속도는 느려지게 되고 지 수(.alpha.)가 1에 가까워지면 점탄성층의 탄성효과는 점성효과에 비하여 거의 무시할 수 있으며 근사해는 의미가 없어지게 된다.

  • PDF

Automatic System Development by Using Friction Force and Stiffness with Nonlinear Characteristic (비선형 마찰과 강성을 이용한 자동화 시스템 개발)

  • Lee, Jeong-Wook;Cho, Yong-Hee;Chang, Yong-Hoon;Kim, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1055-1063
    • /
    • 2004
  • In this study, we developed an automatic veneer sorting system controlled by nonlinear friction and nonlinear stiffness. With these nonlinear characteristics, it was difficult to analysis and to control the system in the fast. However it is necessary to consider nonlinear characteristics to satisfy accurate and rapid control demand in these days. We used not only nonlinear friction but also nonlinear stiffness and combined both to control the system. An experimental device was designed with 4 AC servo-motors and 2 Sensors. Through a series of experiment, we found nonlinear friction characteristics among roller versus veneer and veneer versus veneer and nonlinear stiffness characteristics with stacked veneers. Finally, we showed that the proposed control algorithm was very effective for veneer sorting system with nonlinear friction and stiffness.

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

The Effects of Eiastomer Layer on Minimum Friction Coefficient (최소마찰계수에 대한 Elastomer층의 영향)

  • Cho, Kyu-Sik
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.26-32
    • /
    • 1996
  • 오랜 역사에 걸쳐 연구자들은, 마찰력은 주로 접착에 의한 것으로 믿어 왔으며, 이러한 주장은 실험적으로 증명되지 못했다. 한편, 미끄럼 두 표면 사이의 건식 마찰력은 두 표면 사이의 기계적인 상호작용에 의한 것으로 알려져 있다. 이 연구에서는 두 표면 사이의 기계적 상호작용을 제거함으로써 마찰계수를 감소시키는 방법을 제시하였다. 매끄러운 경한 표면에 얇은 elastomer층을 입힌 비윤활 최소 마찰계수에 대한 본 실험결과는 앞으로 정밀기계부품의 충격을 받는 부위에 응용할 수 있을 것으로 기대된다.

Design of Adaptive Controller to Compensate Dynamic Friction for a Benchmark Robot (벤치마크 로봇의 동적 마찰 보상을 위한 적응 제어기 설계)

  • Kim, In-Hyuk;Cho, Kyoung-Hoon;Son, Young Ik;Kim, Pil-Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.202-208
    • /
    • 2014
  • Friction force on robot systems is highly nonlinear and especially disturbs precise control of the robots at low speed. This paper deals with the dynamic friction compensation problem of a well-known one-link benchmark robot system. We consider the LuGre model because the model can successfully represent dynamic characteristics and various effects of friction phenomenon. The proposed controller is constructed as two parts. An adaptive controller based on dual observers is used to estimate and compensate the dynamic friction. In order to attenuate the friction estimation error and other disturbances, PI observer is additionally designed. Through the computer simulations with the benchmark system, this paper first examines the effects of nonlinear dynamic friction on the control performance of the benchmark robot system. Next, it is shown that the control performance against the dynamic friction is improved by using the proposed controller.

Control Effectiveness of Shear Walls Connected by Beams with Friction Dampers (인방보에 마찰형 감쇠기가 설치된 전단벽의 제진효과)

  • Chung, Hee-San;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.105-115
    • /
    • 2009
  • Numerical analysis of shear walls governed by flexural behavior is conducted for the seismic control performance of proposed friction dampers installed at the center of coupling beams. Control effectiveness of shear walls connected by beams with the proposed dampers are compared for single shear wall with same flexural rigidity. Average responses of the shear walls with the dampers are found with seven scaled-downed earthquakes based on KEC 2005 design spectrum. Slip load is the most important design parameter. It is designed to be 5, 10, 20, 30, 60, 90% of total vertical shear force at damper location to prevent damper slip in specific stories. Nonlinear time-history analysis is conducted by using SeismoStruct analysis program. Seismic control performance of the dampers is evaluated for base shear, energy dissipation, curvature and top-floor displacement. Results show that the dampers are the most effective in reducing the responses when their total slip load is 30% of total vertical shear force.

Robust Digital Nonlinear Friction Compensation - Theory (견실한 비선형 마찰보상 이산제어 - 이론)

  • 강민식;김창제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.88-96
    • /
    • 1997
  • This paper suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteresis nonlinear element which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. A proper Lyapunov function is selected and the Lyapunov direct method is used to prove the asymptotic stability of the suggested control.

  • PDF

Robust Digital Nonlinear Friction Compensation (견실한 비선형 마찰보상 이산제어)

  • 강민식;송원길;김창재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.987-993
    • /
    • 1996
  • This report suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteric nonlinear clement which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. The Lyapunov direct method is used to prove the asymtotic stability of the suggested control, and the stability and the effectiveness are verified analytically and experimentally on a single axis servo driving system.

  • PDF

A Study on the Estimation and Application of Failure Coefficients of Rock (암석의 파괴조건계수 평가 및 적용성에 관한 연구)

  • 장명환;양형식
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 1998
  • To estimate pure shear strength, 150 sets of triaxial test data were analyzed. The proportional coefficient of shear strength($I_c$) at zero normal stress was nonlinearly decreased as failure coefficient m increases, while the internal friction $\phi_0$ at zero normal stress was nonlinearly increased. The ratio of shear strength $(c/\phi_0)$was inversely proportional to the ratio of the internal friction angles$(\phi/phi_0)$ The shear strength decreased as m increased, while internal friction angle increased. And uniaxial strength was proportional to $c,\phi$ Regression analysis showed that shear strength strongly affects m and $\sigma_c$ The proportional coefficient of shear strength was nonlinearly increased with RMR, while the internal friction angle $(\phi}$was linearly decreased.

  • PDF

Frictional resistance of different ceramic brackets and their relationship to the second order angulation between bracket slot and wire (세라믹 브라켓의 종류 및 브라켓 슬롯과 와이어 각도에 따른 마찰 저항 차이)

  • Choi, Yoon-Jeong;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.207-217
    • /
    • 2006
  • Although ceramic brackets have been used widely for improved esthetics during treatment, ceramic brackets have some inherent problems; brittleness, attrition of the opposing teeth and high frictional resistance. This study was performed to understand the frictional resistance of the ceramic brackets, as well as to be a helpful reference for finding the solutions to the problem of frictional resistance. Three different kinds of brackets were used; metal bracket, polycrystalline ceramic brackets with a metal slot to reduce the high frictional resistance and monocrystalline ceramic brackets. The brackets were tested with a $.019{\times}.025$ stainless steel wire with a second order angulation of $0^{\circ}\;and\;10^{\circ}$, and the static and kinetic frictional forces were measured on the universal testing machine. The results of this study showed that the ceramic brackets, especially the monocrystalline ceramic bracket without a metal slot, generated higher frictional resistance than the metal bracket, and the frictional resistance was increased as the angulation between the bracket slot and the wire increased. Therefore, the development of the ceramic bracket with reduced frictional resistance and the prevention of excessive crown tipping during orthodontic treatment will lead to the simultaneous attainment of more efficient and improved esthetic treatment goals.