• Title/Summary/Keyword: 마찰계수-속도 곡선

Search Result 17, Processing Time 0.025 seconds

A Study on the Evaluation of Design of Road Horizontal Alignments Based on the Operating Speed (주행속도 기반 도로 평면선형 설계 안전성 평가연구)

  • Kim, Yong-Seok;Cho, Won-Bum
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.25-32
    • /
    • 2004
  • It is implicated in the current road design manual that design speed is well representing the operating speed of drivers. On the contrary, the disparity between the design speed and operating speed means that current road design cannot guarantee the safety and comfort of driving. In this context, operating speed was observed at the two lane rural roadways to find out the relation of operating speed and design speed. In addition to this, the friction factor from supply and demand which was derived from the operating speed was compared in terms of the dynamics in driving safety factor. It was concluded that the actual speed was consistently exceeding the design speed at the horizontal curves having the radius less than or equal to 200 m. Similarly, the demanded side friction was also consistently exceeding the supplied side friction at the horizontal curves having the radius less than or equal to 200 m and the amount of difference was also inversely proportional to the radius of the horizontal curves.

Development of Estimation of Curve Radii of Road Considering Design Consistency (설계일관성을 고려한 도로 곡선반경 산정에 관한 연구)

  • Park, Je-Jin;Lee, Sang-Ha;Park, Kwang-Won;Ha, Tae-Jun
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2008
  • Achieving consistent geometric design is an important goal in highway design to ensure obtaining safe, economical and smooth traffic operation. Most evaluation of consistency is based on 'speed change' in speed profile. According to literature, the speed depends on geometric elements, speed on tangent section prior to a curve, and background around roads. Especially, the radius is the most main element mentioned in various literature. Therefore, this paper shows two ways of calculating horizontal radius on real road, that is, three-dimensional road. First of all, the radius of horizontal curve is calculated based on physical method. The calculated radius contains not only superelevation but also longitudinal grade while the current minimum radius is calculated by considering superelevation and side friction according to the point-mass equation. Secondly, the problem of composed curves with distorted appearance by overlaying sag or crest vertical alignment has been known. To quantify the extent of distortion effects, the method of calculation of real seen so called 'Perspective Radius' is developed. The paper presents the perspective radius and recommended perspective radius.

  • PDF

A Need of Management of Horizontal Alignment Design at Rural Roads (지방부 도로에서 평면선형 설계관리의 필요성)

  • Kim, Yong-Seok;Cho, Won-Bum
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.25-31
    • /
    • 2010
  • Road design guideline provides the directions on how to design a road alignment based on design speed, and this guideline has a design expectation in that design speed is supposed to be equal to the operating speed of drivers. Horizontal curve design is also based on design speed, and minimum radius is derived based on the drivers comfort while negotiating the curve. However, side friction reflecting drivers comfort is lower than a physical friction measured on wet road surface, therefore, it is reasonable to regard the criterion on minimum radius has a safety margin. Futhermore, the practical preference of choosing the larger radius than minimum leads to a noticeable gap between design speed and operating speed, so links to the violation of design expectation implicated in the guideline. In order to review this assumption, friction and operating speed at rural roads was measured and observed. As the results, a safety margin brought out by the gap between comfort-based friction and measured friction is qualitatively derived. Also, the gap between design speed and operating speed presumably caused by the safety margin and practical preference is analysed. By this, it is suggested that current design guideline should provides not only the minimum radius but also the management of road alignment design to minimize the gap between the design speed and operating speed.

A Study on Turning Characteristics of Vehicle Based on Parameters of Curved Road (매개변수에 따른 커브 길에서 차량 선회특성에 관한 연구)

  • Yang, Sung-Hoon;Lee, Hak-Yong;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.25-32
    • /
    • 2013
  • Entry speed of the vehicle and lateral acceleration acting on the vehicle, roll-angle associated with the overthrow, and then the structure of the road, the friction of road surface are important factors in turning on the curved road. In this study, we analyzed the state change of the vehicle causing entry speed of the vehicle and superelevation of the road, the friction coefficient by using a PC-crash Program for traffic accident reconstruction. As a result, when vehicle is turning the curved road, we could ascertain that the structure of the road and state of the road surface are a major factor about the set up of limited speed.

Analytic Prediction of Friction Factors for Turbulent Flow in Longitudinally Finned Rod Bundles (길이 방향 핀이 달린 봉 다발에서의 난류 마찰계수 산출을 위한 해석적 방법)

  • Kim, Nae-Hyun;Hong, Sung-Deok;Kwon, Hyuk-Sung;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.401-409
    • /
    • 1991
  • This work is concerned with the development of an analytical model to predict the friction in longitudinally finned rod bundles. Such bundles are currently considered in KMRR design. The present model assumes the validity of the Law of the Wall over entire flow area. The flow channel area is divided into the interfin region and a number of element channels, and the algebraic form of the Law of the Wall is integrated over each element channel and interfin region to yield an analytic expression for the pressure drop. The model reasonably predicts the 6 fin KMRR data, and overpredicts the 8 fin data about 15 percent.

  • PDF

Analysis on the Behavior of Reticulated Root Piles for Reinforcing Footing using Computer Program (컴퓨터 프로그램을 이용한 기초보강용 그물식 뿌리말뚝의 거동 분석)

  • 박영호;변광욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.348-361
    • /
    • 1991
  • When reinforcing strip footing on a sand 8round with reticulated root piles, reinforcing effect depends on the length , number, cross sectional area, penetration angle, spacing, and Young's modulus of piles. the mode of action of reinfocement tendons in soil isn't one of carring developed tensile stresses but of anisotropic(uni-directional) reduction or even supression of one normal strain rate. R. H. Bassett and N. C. Last proposed that the reinforcement should be located on the direction of minor strain rate which coincides with the tensile strain rate in the velocity characteristics. Based on this proposal the author carried out a series of 2 - dimentional finite element analysis which varies the parameters mentioned above.

  • PDF

Speed Estimation from Tire Marks for Vehicle Accident Reconstruction (곡선 형태의 타이어 자국으로부터 차량사고시 속도추정)

  • Kim, Min-Seok;Lee, Ji-Hoon;Yoo, Wan-Suk;Kim, Kee-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, a new technique was suggested to estimate vehicle speed for the traffic accident reconstruction, and accident investigators can estimate initial vehicle speed based on this suggested technique. Turning tests with several vehicle speeds were executed and compared with the motion of the vehicle and the shape of the tire marks. A new method for estimating the coefficient of friction is suggested by using the longitudinal and lateral components of tire marks. And also, a speed calculation graph is suggested to estimate vehicle speed for traffic accident reconstruction.

Characteristics of Behavior of Steel Sheet Pile installed by Vibratory Pile Driver (진동타입기에 의해 시공되는 강널말뚝의 거동특성)

  • Lee, Seung Hyun;Kim, Byoung Il;Kim, Zu Cheol;Kim, Jeong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.27-35
    • /
    • 2010
  • Instrumented steel sheet piles being driven by vibratory pile driver were installed in granular soil deposit and behaviors of the sheet piles were investigated. One of the instrumented steel sheet pile was installed without clutch and the other was installed with clutch. Sheet pile with clutch means that of installed in connection with pre-installed sheet pile. Penetration rates of sheet piles measured from depth measuring drum has shown that interlock friction had great effect on penetration speed of sheet pile. Clutch friction shows irregular distribution along the depths of penetration and its magnitude was estimated as 19.1kN/m. According to the accelerations obtained from accelerometer, it was seen that steel sheet pile behaviored nearly as a rigid body. Efficiency factor of an isolated sheet pile was 0.42 and that of the connected sheet pile was 0.71. Shapes of dynamic load transfer curves obtained from analysis of measuring devices was similar to those suggested by Dierssen.

Dynamic Characteristic Analysis of 3-Piece Freight Vehicle with Wedge Friction Damper Using ADAMS (ADAMS를 이용한 3-Piece 마찰 웨지 댐퍼가 장착된 화차의 동특성 해석)

  • Lee, Chul-Hyung;Han, Myung-Jae;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.299-310
    • /
    • 2017
  • In this work, an independent-load friction wedge model was developed using the ADAMS/View program to predict the performance of a freight vehicle with a bogie employing a 3-piece friction wedge. The friction wedge model can generate friction according to lateral and vertical directions of the bolster. The developed friction wedge model was applied to the ADAMS/Rail vehicle model, and results of the dynamic analysis showed a critical speed of 210km/h. In the linear safety analysis, it was confirmed that the lateral and vertical limit of acceleration of the vehicle were satisfied based on UIC518. In the 300R curve line, the application speed was 70km/h, which was satisfied with the limit acceleration of the car-body and bogie based on UIC518. Also, the developed model satisfied the wheel loading, lateral force and derailment coefficient of "The Regulations on Safety Standards for Railway Vehicles"

Evaluation of the Mechanical Properties of Electroformed Multi-nano Layers by the Dynamic-Nano Indentation Method (동적 나노압침법과 유한요소 해석에 의한 전주된 Invar-Cu 복합 박막층의 기계적 특성 평가)

  • Gang, Bo-Gyeong;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.1-201.1
    • /
    • 2016
  • 전주된 Invar (Fe-35%Ni) 박판 위에 증착된 Cu 박막은 스퍼터 전력량이 증가할수록 증착속도가 증가하였다. Cu/Invar 박판이 Invar 박판보다 면저항 값이 34%로 작았다. Invar 박판 위에 Cu가 증착되면 최대자화와 투자율은 각각 40.3, 65.0 [%] 감소하였다. Cu 박막의 탄성하강강성도, 마찰계수, 피로한계는 각각 45, 0.130, 0.093 이었다. 동적 나노 압침법으로 얻은 Invaar/Cu 박막의 하중-시간-변위 곡선의 가장 큰 차이는 탄성하강강성도(elastic stiffness) 이었다. 미세경도와 나노경도의 실험적 관계식은 $Y[GPa]=9.18{\times}10^{-3}X[Hv]$ 이었다. 나노압침선단의 하중분포를 이차원 선형 및 비선형 유한요소해석을 통하여 1.0 [mN] 의 정적하중을 가한 Cu 박막은 486 [mN] 으로 예측되었다. 이는 표면탐침현미경으로 관찰한 압흔의 변형정도와 유사한 경향을 보였다.

  • PDF