• Title/Summary/Keyword: 마이크로 핀관

Search Result 27, Processing Time 0.033 seconds

An Experimental Study on Evaporative Heat Transfer Characteristics in Micro-Fin Tubes Before and After Expansion Process (마이크로핀관의 확관 전후 증발열전달 특성에 관한 실험적 연구)

  • 전상희;황윤욱;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.932-940
    • /
    • 2000
  • An experimental study on evaporative heat transfer characteristics in micro-fin tubes before and after expansion process has been performed with R-22. Single-grooved micro-fin tubes with outer diameter of 9.52 mm were used as test sections, and it was uniformly heated by applying direct current to the test tubes. Experiments were conducted at mass flow rates of 20 and 30 kg/hr. For each mass flow rate condition, evaporation temperature was set at 5 and $15^{\circ}C$and heat flux was changed from 6 to 11 kW/$m^2$ The evaporative heat transfer coefficient of micro-fin tubes after expansion is decreased because of the crush of fins and enlargement of inner diameter compared to that before expansion. Convective boiling effect decreased remarkably at higher quality range in the micro-fin tube after expansion, and the difference of the heat transfer coefficient in micro-fin tubes before and after expansion was greater for higher quality region. The evaporative heat transfer coefficient of the micro-fin tube after expansion was 19.9% smaller on the average than that before expansion.

  • PDF

Effect of Refrigeration Oil on the Condensation Heat Transfer for Alternative Refrigerant in Microfin Tube with a U-bend (마이크로핀관 곡관부내 대체 냉매의 응축 열전달에 미치는 냉동기유의 영향)

  • 태상진;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.541-549
    • /
    • 2000
  • The present study experimentally investigated the effect of refrigeration oil on the condensation heat transfer for R-407C and R-22 in a microfin tube with a U-bend. POE oil ($74.1\;\textrm{mm}^2/s,\;40^{\circ}C$,) and mineral oil $62.5\;\textrm{mm}^2/s,\;40^{\circ}C$,) were used for R-407C and R-22 respectively Experimental parameters were an oil concentration from 0 to 5%, a mass flux from 100 to $400kg/m^{2}s sand an inlet quality from 0.5 to 0.9. The enhancement factors for both R-22 and R-407C refrigerants at the first straight section decreased continuously as the oil concentration increased. They decreased rapidly as the mass flux decreased and the inlet quality increased. The heat transfer coefficients in the U-bend showed the maximum at the $90^{\circ}$/TEX> position. The heat transfer coefficients at the second straight section within the dimensionless length of 48 were larger by a maximum of 33% than the average heat transfer coefficient at the first straight section.

  • PDF

An Experimental Study on the Evaporative Heat Transfer Characteristics of $CO_2$/Propane Mixtures Flowing Upward in Vertical Smooth and Micro-fin Tubes with an Outer Diameter of 5 mm (외경 5mm 수직 평활관 및 마이크로핀관 내의 이산화탄소/프로판 혼합냉매의 증발열전달 특성에 관한 실험적 연구)

  • Cho, Jin-Min;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.243-251
    • /
    • 2009
  • Refrigerant mixtures provide an opportunity to adjust their properties to fit design criteria and a possibility to create new blends that can improve heat transfer characteristics. Therefore, mixture of $CO_2$ and propane is chosen which may be a promising refrigerant and has good environmental compatibility. This paper presents measured heat transfer coefficient data during evaporation process of $CO_2$/propane mixtures flowing upward in vertical smooth and. micro-fin tubes. Smooth and micro-fin tubes with outer diameters of 5 mm and length of 1.44in were selected as test tubes. The tests were conducted at mass fluxes of 212 to $656kg/m^{2}s$, inlet temperatures of -10 to $30^{\circ}C$, heat fluxes of 15 to $60\;kW/m^2$ and for several compositions (75/25, 50/50, 25/75 wt%). Among $CO_2$/propane refrigerant mixtures, the heat transfer characteristics are much better than that of any compositions when the composition is 75/25 (wt%).

Flow Condensation Heat Transfer of R22, R134a, R407C, and R410A in Plain and Microfin Tubes (평관과 마이크로 핀관 내 R22, R134a, R407C, R410A의 흐름응축 열전달성능)

  • 조영목;박기호;송길흥;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.656-663
    • /
    • 2002
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 9.52 mm outside diameter and 1.0 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of $40^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/$m^2s$. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 11~l5% and 23~53% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 10~21% for a microfin tube. In general, HTCs of a microfin tube were 2.0~3.0 times higher than those of a plain tube.

Evaporation heat transfer characteristics inside the U-bend of the smooth and the microfin tube using alternative refrigerant (대체냉매를 사용한 평활관 및 마이크로핀관 곡관부내 증발 열전달 특성)

  • Jo, Geum-Nam;Kim, Byeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1207-1217
    • /
    • 1997
  • The present work experimentally investigated the effects of mass flux, heat flux, inlet quality on the heat transfer performance inside the U-bend of smooth and microfin tube using R-22 and R-407C refrigerants. The parameters were 200 and 400 kg/m$^{2}$ s for mass flux, 6 and 12 kw/m$^{2}$ for heat flux, 0.1 and 0.2 for inlet quality under the pressure of 0.65 MPa. The apparatus consisted of the test section of four straight sections and three U-bends, preheater, condenser, refrigerant pump, mass flow meter etc. The average heat transfer coefficient at the downstream straight section after U-bend was affected by U-bend due to the centrifugal force and mixing of two-phase flow in the U-bend. The average heat transfer coefficient at the U-bend was 4 ~ 33 % higher than that at the straight section. The average heat transfer coefficients were affected in the order of mass flux, heat flux and inlet quality. The average heat transfer coefficients in the microfin tube were lager by 19 ~ 49% and 33 ~ 69% than that in the smooth tube at the straight section and at the U-bend separately. The average heat transfer coefficients for R-407C were larger by 33 ~ 41% and 17 ~ 29% than that for R-22 in the smooth tube and the microfin tube separately.

Studies on the Evaporative Heat Transfer Characteristics and Pressure Drop of CO2 Flowing Upward in Inclined (45°) Smooth and Micro-fin Tubes (경사평활관 및 마이크로핀관에서의 이산화탄소의 증발열전달 특성과 압력강하에 관한 실험적 연구)

  • Kim, Yong-Jin;Cho, Jin-Min;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.612-620
    • /
    • 2008
  • New alternative refrigerants have been developed due to the ozone layer depletion and global warming. For this reason, carbon dioxide is believed to be a promising refrigerant for use in air conditioners and heat pumps. Evaporative heat transfer characteristics and pressure drop of $CO_2$ with outer diameter of 5 mm in inclined ($45^{\circ}$) smooth and micro-fin tubes have been investigated by the experiments with respect to several test conditions such as mass fluxes, heat fluxes, evaporation temperatures in this study. The inclined ($45^{\circ}$) smooth and micro-fin tubes with length of 1.44 m were installed to measure the evaporative heat transfer coefficients of $CO_2$ and heat was supplied to the refrigerant by direct heating method where the test tube was uniformly heated by electricity. The tests were conducted at mass fluxes from 212 to $656\;kg/m^2s$, heat fluxes from 15 to $60\;kW/m^2$ and evaporation temperatures from -10 to $20^{\circ}C$. The heat transfer coefficients of $CO_2$ are slightly increased with increasing mass flux, and the heat transfer characteristics in the inclined ($45^{\circ}$) tubes are enhanced about $5{\sim}10%$ compared with those in horizontal or vertical tubes.

Experiments on Condensation Heat Transfer Characteristics and Flow Regime Inside Microfin Tubes (마이크로핀관내 유동 양식과 응축 열전달 특성 연구)

  • 한동혁;이규정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.602-611
    • /
    • 2001
  • Experiments on the condensation heat transfer characteristics inside a smooth and a microfin tube with R410A/R22 are performed in this study. The test tubes 7/9.52 mm in outside diameters and 3m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. Most flows in this study are in the annular and/or wavy flow regime. It is shown that the heat transfer is enhanced and the pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficients and the pressure drops, it is found that the high heat transfer enhancement factors are obtained in the range of small mass flux while the penalty factors are almost equal. Experiments results show that average heat transfer coefficients of R410A is larger than that of R22 and pressure drop of R410A is less than R22.

  • PDF

An experimental study on heat transfer characteristics in a vertical micro-fin tube during evaporation process of carbon dioxide flowing upward (이산화탄소의 마이크로 핀관 내 상향유동 증발열전달 특성에 관한 연구)

  • Kim, Yong-Jin;Cho, Jin-Min;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.247-251
    • /
    • 2007
  • Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristics of carbon dioxide flowing upward in a vertical micro-fin tube have been investigated by experiment. Before a test section, a pre-heater is installed to adjust the inlet quality of the refrigerant to a desired value. The micro-fin tube with outer diameter of 5 mm and length of 1.44 m was selected as the test section. The test was conducted at mass fluxes of 318 to $530\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat fluxes of 15 to $30\;kW/m^2$. As the vapor quality increases, the heat transfer coefficients of carbon dioxide are increased, and the heat transfer coefficients increase when the heat fluxes and saturation temperatures increase, and there was not much of influence of mass flux on the heat transfer coefficients.

  • PDF