• Title/Summary/Keyword: 마이크로 반응기

Search Result 120, Processing Time 0.029 seconds

Thermal CVD of Silica Thin Film by Organic Silane Compound (유기 실란화합물을 이용한 SiO2 박막의 열CVD)

  • Kim, Byung-Hoon;Ahn, Ho-Geun;Imaishi, Nobuyuki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.985-989
    • /
    • 1999
  • Silica($SiO_2$) thin film was synthesized by a low pressure metal organic chemical vapor deposition(LPMOCVD) using organic silane compound. Triethyl orthosilicate was used as a source material. Operation pressure was 1~100 torr at outlet of the reactor and deposition temperature was $600{\sim}900^{\circ}C$. The experimental results showed that the high reaction temperature and high source gas concentration led to higher growth rate of $SiO_2$. The step coverage of films on micro-scale trenches was fairly good, which resulted from the phenomena that the condensed oligomers flow into the trenches. We estimated a reaction path that the source gas polymerizes and produces oligomers (dimer, trimer, tetramer, etc.), which diffuse and condense on the solid surface. The chemical species in the gas phase at the outlet of reactor tube were analyzed by quadrapole mass spectrometer. The peaks, assigned to be monomer, dimer of source gas and geavier molecules, were observed at 650 or $700^{\circ}C$. At higher temperature($900^{\circ}C$), the peaks of the heavy molecules disappeared, because almost all the source gas and intermediate(polymerized oligomer) molecules were oxidized or condensed on colder tube wall.

  • PDF

Microwave-assisted TS-1 Membrane for the Separation of Ethylbenzene from Xylene Mixture (마이크로웨이브로 제조된 TS-1 Membrane을 이용한 혼합 자일렌에서의 에틸벤젠 고순도화)

  • Jeon, Yu-Kwon;Lee, Gi-Cheon;Chu, Young-Hwan;Choi, Seong-Hwan;Seo, Young-Jong;Shul, Yong-Gun
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.120-127
    • /
    • 2012
  • In this study, separation of ethylbenzene from mixed xylene was performed by using TS-1 zeolite membrane. TS-1 zeolite membranes were prepared by microwave synthesis and changing the reaction temperature. MFI-type TS-1 membranes are synthesized on alumina tubes by functional coating using 3-chloropropyltrimethoxysilane (3CP-TMS). On top surface of interlayer, nano TS-1 crystals were seeded. To form interlayer, microwave-assisted growth of TS-1 zeolite was carried out and thin zeolite layers were produced. All of the prepared membranes are tested to separate ethylbenzene from mixed xylene at different operating temperatures. TS-1 membrane with zeolite seed synthesized at $170^{\circ}C$ compared to 120, $140^{\circ}C$ shows the best ethylbenzene separation at the operation temperature of $200^{\circ}C$ from ternary mixed xylene containing certain composition of ethylbenzene/p-xylene/m-xylene. (separation factor : 2.64, ethylbenzene flux : 1703.0 mol/$m^2{\cdot}s{\cdot}Pa$).

Fs-THz beam line electron accelerator of pulse modulator design and fabrication (펨토 초-테라헤르츠 빔 라인용 펄스 모듈레이터의 설계와 제작)

  • Son, Yoon-Kyoo;Kwon, Sei-Jin;Suh, Jae-Hak;Jang, Sung-Duck;Kang, Heung-Sik;Lee, Kyung-Tae;Ro, Sung-Chae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1322-1323
    • /
    • 2008
  • 기존의 펨토 초 레이저를 이용하여 발생시킨 테라 헤르츠 광원의 한계를 극복하기 위하여 대용량의 가속기를 이용한 테라 헤르츠 광원의 발생에 관한 연구가 활발히 진행되고 있다. 포항방사광 가속기연구소에서도 펨토 초 테라 헤르츠 빔을 이용한 분광학적인 방법을 사용하여 단백질 접힘과 DNA-단백질 간 상호작용, 화학적, 생물학적인 반응 동력학 등에 관한 연구와 영상 기술개발 등을 할 계획을 가지고 펨토초 테라 헤르츠 빔 라인을 건설 중에 있다. 펨토 초-테라 헤르츠 빔 라인의 마이크로웨이브를 가속하는 장치에 사용되는 전원장치의 설계와 제작 및 시험과정을 외국기술에 의존하지 않고 순수 국내기술로 실현하였다. 본 논문에서는 펄스 모듈레이터의 설계와 실험결과를 보이고자 한다.

  • PDF

A Study on High Efficiency Power Conditioning System for Safety Operation of PEMFC_type Fuel Cell Generation System (고분자전해질형 연료전지 발전시스템의 안전운전을 위한 고성능 전력변환기에 관한 연구)

  • Kwak Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.57-61
    • /
    • 2006
  • Fuel cells are direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper is studied on a high efficiency power conditioning system (PCS) applied to the proton exchange membrane fuel cell (PEMFC) generation system. This paper is designed to a novel PCS circuit topology of high efficiency. Some experimental results of the proposed PCS is confirmed to the validity of the analytical results.

  • PDF

Fabrication of Silicon Micromechanical Structures by Stain Etching (스테인 에칭에 의한 실리콘 미세기계구조의 제조)

  • Yu, In-Sik;Sul, Jung-Hoon;Shin, Jang-Kyoo;Sim, Jun-Hwan;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.64-71
    • /
    • 1995
  • We have developed a silicon etching method by which highly doped layers are selectively etched using stain etching technique. Current supply to the backside contact of silicon wafer and special reactor are not required in this method. Therefore this method is much simpler than anodic reaction method and could be applied to standard VLSI process. In addition, highly doped layers of several wafer structures, including the structures where conventional anodic reaction method cannot be used, could be preferentially etched by this technique. We have also fabricated micromechanical structures such as cantilevers and air-bridges on the $n/n^{+}/n$ wafer and air-bridges on the $p/p^{+}$ wafer using this stain etching technique.

  • PDF

Fabrication of R-plane Sapphire wafer for Nonpolar a-plane GaN (비극성 a-GaN용 R-면 사파이어 기판의 제조)

  • Kang, Jin-Ki;Kim, Jung-Hwan;Kim, Young-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.25-32
    • /
    • 2011
  • We have studied on the slicing and polishing processes of R-plane sapphire wafers for the substrates of UHB nonpolar a-plane GaN LED. The fabrication conditions of the R-plane and c-plane wafers were influenced by the large anisotropic properties (mechanical properties) of the sapphire. The slicing process was more affected by the anisotropic properties of R-plane than the polishing process. When the slicing direction was $45^{\circ}$ to the a-flat, the slicing time was shorter and the quality of as-slicing wafers was better than the slicing direction of normal to the a-flat. The MRR(Material removal rate) of mechanical polishing processes such as lapping and DMP(Diamond mechanical polishing) did not show significant differences between the R-plane and c-plane. The MRR of the c-plane was about two times higher than that of R-planes at the CMP(Chemical mechanical polishing) process due to the formation of hydrolysis reaction layers on the surface of the c-plane.

Fabrication of 3D Multilayered Microfluidic Channel Using Fluorinated Ethylene Propylene Nanoparticle Dispersion (불소화 에틸렌 프로필렌 나노 입자 분산액을 이용한 3차원 다층 미세유체 채널 제작)

  • Min, Kyoung-Ik
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.639-643
    • /
    • 2021
  • In this study, fluorinated ethylene propylene (FEP) nanoparticle as an adhesive for fabricating a three-dimensional multilayered microfluidic device was studied. The formation of evenly distributed FEP nanoparticles layer with 3 ㎛ in thickness on substrates was achieved by simple spin coating of FEP dispersion solution at 1500 rpm for 30 s. It is confirmed that FEP nanoparticles transformed into a hydrophobic thin film after thermal treatment at 300 ℃ for 1 hour, and fabricated polyimide film-based microfluidic device using FEP nanoparticle was endured pressure up to 2250 psi. Finally, a three-dimensional multilayered microfluidic device composed of 16 microreactors, which are difficult to fabricate with conventional photolithography, was successfully realized by simple one-step alignment of FEP coated nine polyimide films. The developed three-dimensional multilayered microfluidic device has the potential to be a powerful tool such as high-throughput screening, mass production, parallelization, and large-scale microfluidic integration for various applications in chemistry and biology.

Preparation of TiO2 Nanoparticles from Titanium Tetraisopropoxide Using an Aerosol Microreactor (에어로졸 마이크로반응기에 의한 Titanium Tetraisopropoxide로부터 TiO2 나노입자 제조)

  • Choi, Jae Gil;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.609-615
    • /
    • 2005
  • $TiO_2$ particles, 30-300 nm in diameter, were prepared by thermal decomposition of titanium tetraisopropoxide (TTIP) using an aerosol microreactor, by which about $1{\mu}l$ of the liquid precursor is injected into an evaporator, 1 cc in volume, and vaporized precursor is then transported by nitrogen as a bolus to a tubular reactor 4 mm in diameter and 35 cm in length. Investigated were the effects of the reactor temperature and the concentration of TTIP vapor on the morphology, particle size distribution and crystalline structure of produced $TiO_2$ particles. With TTIP vapor concentration kept constant at 1 mol%, the reactor temperature was varied from 300 to 500 and $700^{\circ}C$. The primary particle size decreased with increasing the temperature, and the size distributions were mono-modal at 300 and $500^{\circ}C$, but bi-modal at $700^{\circ}C$. The TTIP vapor concentration was increased from 1 to 3.5 and 7 mol%, holding the reactor temperature at $700^{\circ}C$. The bi-modal distribution seen at the concentration of 1 mol% disappeared and the number of particles composing an agglomerate increased at the higher concentrations. These effects of the reactor temperature and the precursor concentration were discussed in comparison with experimental results reported earlier.

Measurement of Vestibular Ocular Reflex in Normal Subjects Using Galvanic Stimulator and Videooculograph (전기자극과 VOG(Videooculograph)를 이용한 정상인의 전정 안반사 측정)

  • 김수찬;정운교;남기창;이원상;김영하;김덕원
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.487-496
    • /
    • 2001
  • In this study, a galvanic stimulator providing bipolar mode controlled by a PIC(peripheral interface controller) was constructed to evaluate vestibular function The maximum load and maximum current intensity of the constant current source were 3$k\Omega$ and 5mA. respectively. and it could Produce DC, sine wavers. or Pulse waves. Eve movements of 20 normal subjects by galvanic stimulation were analyzed using a commercial videooculogragh. During stimulating with DC for 30 sec. we recorded the response of eye movement with current intensity of 0.75. 1 2, and 3 mA. Nystagmus occurred to all the subjects when the galvanic stimulus intensity was larger than 2 mA. Average SPV(slow Phase eye movement velocity) and the number of nystagmus increased from 7.1 to 4.8 deg/sec and from 17 to 48, respectively, when the stimulus current increased from 0.75 to 3 mA. All the fast eye movement of the nystagmus were the direction of the negative electrode. The asymmetry which means the difference between right- and left-eye movements decreased when the stimulus intensity increased. It is expected that this study would be useful in evaluating vestibular function and in studying basic Physiology mechanism of vestibular ocular reflex by galvanic stimulus .

  • PDF

Preparation of Aminosiloxane-grafted Poly(imidesiloxane) Copolymer and its Morphology and Adhesive Properties in Film (아미노실록산이 그래프팅된 폴리(이미드실록산) 공중합체 제조와 필름 모폴로지 및 점착 특성 연구)

  • Lee, Ji Mok;Kwon, Eunjin;Lee, Sunyoung;Jung, Hyun Min
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.547-552
    • /
    • 2013
  • Polyimide (PI) containing carboxyl functional group was prepared and reacted with diaminosiloxane during high temperature film casting. The morphology of resulting film was observed by using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), which revealed that globular 100 nm-sized PI domains and continuous polysiloxane phase were formed. X-ray photoelectron spectroscopy (XPS) study indicated that air-film interface mainly consisted of polysiloxane blocks. Poly(imidesiloxane) thin layer was thermostable until $400^{\circ}C$ and its pressure- sensitive adhesive property was retained up to $300^{\circ}C$. The comparative experiments revealed that grafting between carboxyl groups of polyimide and aminosiloxane was crucial for formation of microdomain structure and pressure-sensitive adhesive property.