• Title/Summary/Keyword: 마이크로 도플러

Search Result 18, Processing Time 0.023 seconds

Simulation and Evaluation of Sea Surface Observations Using a Microwave Doppler Radar (시뮬레이션을 이용한 마이크로웨이브 도플러 레이더 해면관측법의 평가)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.116-122
    • /
    • 2015
  • A simulation is applied to evaluate sea surface observations such as wave heights and surface currents by using a microwave Doppler radar. It is reported that the microwave irradiation width on the sea surface and Fourier transform time taken to sample data for frequency analysis affect Doppler spectra. To investigate the influences by these parameters, Doppler spectra are simulated with various numerical sea surface waves with currents. From the results, in the case of the microwave irradiation width is five times smaller than the wavelength of the sea surface wave, and the Fourier transform time is also five times shorter than the period of the sea surface wave, there is a possibility to measure wave heights accurately with a Doppler radar. In addition, relative surface currents can be estimated by analysis of long Fourier transform time. The simulation results showed the appropriate observing conditions with a microwave Doppler radar.

Analysis of Micro-Doppler Signatures from Rotating Propellers Using Modified HHT Method (수정된 HHT 기법을 이용하여 회전하는 프로펠러 날개에 의한 마이크로 도플러 신호의 해석)

  • Park, Ji-Hoon;Choi, Ik-Hwan;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1100-1106
    • /
    • 2012
  • This paper has presented the analysis of the micro-Doppler signatures scattered from the blades of the rotating propeller using the modified HHT method, one of the joint time-frequency analysis methods. The field scattered from the blade edge of the propeller was calculated using equivalent current method(ECM). After the acquisition of the scattered field data in the time domain, the modified HHT method was applied to analyze the micro-Doppler signature. The analysis results showed not only a good agreement with the realistic dynamic characteristic of the blade but also sinusoidally varing characteristics of the micro-Doppler signatures generated from rotating objects. It could be concluded that the joint time-frequency analysis via the modified HHT provided the discriminative characteristics for recognizing a small aircraft target with small RCS value.

Development of electricity saving system using the doppler effect (도플러 효과를 이용한 전기절약시스템 개발)

  • Jung, Soon-Won;Lee, Jae-Jin;Koo, Kyung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.38-40
    • /
    • 2008
  • 마이크로파 도플러 센서는 자신이 발송한 마이크로파가 반사되는 것을 직접 수신하여 주파수를 비교하기 때문에 PIR 센서의 문제점을 완전히 극복한다. 마이크로파 도플러 센서는 대부분의 주위 환경에 둔감하여 주변 온도, 먼지의 적층 여부, 때나 주변 잡음에 대하여 잘 동작한다. 본 연구에서 개발된 전기절약 시스템은 마이크로웨이브 센서로 사람 및 사물의 미세한 움직임을 실시간으로 감지하여 AC전원으로 구동되는 전등을 자동으로 On/Off 함으로써 전력소비를 최소한으로 줄여주는 전기절약형 감지센서이다. 마이크로웨이브 센서는 빛, 먼지, 대기 온도와 같은 자연적인 요소에 영향을 거의 받지 않으므로 현재 고려중인 PIR 센서보다는 오작동이 크게 낮아 좀 더 효율성이 있을 것이다. 본 시스템을 설치하고 실시한 예에서와 같이 약 60% 이상의 에너지 절감 효과가 나타났으며, 이는 공사비 대비 경제성을 계산해 봤을 때, 설치비 회수 기간은 약 1-1.5년이었다. 본 연구 결과로 개발된 마이크로파 도플러 센서는 향후 전기에너지 절감에 충분한 기여를 할 것으로 확신한다.

  • PDF

Multi-Target Position Estimation Technique Using Micro Doppler in FMCW Radar System (FMCW 레이다 시스템에서 마이크로 도플러를 이용한 다중 목표물 위치 추정 기법)

  • Yoo, Kyungwoo;Chun, Joohwan;Ryu, Chung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.996-1003
    • /
    • 2016
  • Trilateration technique using time of arrival(TOA) is generally used for single target position estimation in radar system. However, trilateration technique has limitation in case of multiple targets, since it is difficult to distinguish the measurements corresponding to the respective targets. In this study, to eliminate ambiguity of relation between measurements and targets, micromotion of each target is measured by micro Doppler which is actively studied in radar industry nowadays and these information are used to distinguish measurements used at trilateration technique. Resultingly, the trilateration technique is applied successfully for each target. The targets are considered as multiple submissiles separated from the missile. Simulation results shows the performance of the proposed algorithm.

A Study on the design of the Microstrip Patch Array Antenna for Doppler Radar (도플러 레이더용 마이크로스트립 페치 배열 안테나의 설계에 관한 연구)

  • 강중순;손병문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.519-526
    • /
    • 2002
  • In this paper, a microstrip patch array antenna for a Doppler radar at 10.525GHz is desinged and fabricated. To be used for mobile radar system, the antenna is fabricated on a single layer laminate to resist a fire impact and is covered with the Teflon foam. To obtain the desired characteristics, the array antenna is designed 4$\times$8 array using a corporate 3-dB amplitude taper. Also, using square patch elements, the antenna can be converted to a circular polarized antenna later. The designed and fabricated array antenna has the reflection coefficient$({S_11})$ -53.498dB, the horizontal beam width of $10^{\circ}$, the vertical beam width of $18.8^{\circ}$, the gain of 21dBi, the bandwidth of 220MHz for VSWR<1.5 and a side lobe level of less than -17.5dB.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.

Human Walking Detection and Background Noise Classification by Deep Neural Networks for Doppler Radars (사람 걸음 탐지 및 배경잡음 분류 처리를 위한 도플러 레이다용 딥뉴럴네트워크)

  • Kwon, Jihoon;Ha, Seoung-Jae;Kwak, Nojun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.550-559
    • /
    • 2018
  • The effectiveness of deep neural networks (DNNs) for detection and classification of micro-Doppler signals generated by human walking and background noise sources is investigated. Previous research included a complex process for extracting meaningful features that directly affect classifier performance, and this feature extraction is based on experiences and statistical analysis. However, because a DNN gradually reconstructs and generates features through a process of passing layers in a network, the preprocess for feature extraction is not required. Therefore, binary classifiers and multiclass classifiers were designed and analyzed in which multilayer perceptrons (MLPs) and DNNs were applied, and the effectiveness of DNNs for recognizing micro-Doppler signals was demonstrated. Experimental results showed that, in the case of MLPs, the classification accuracies of the binary classifier and the multiclass classifier were 90.3% and 86.1%, respectively, for the test dataset. In the case of DNNs, the classification accuracies of the binary classifier and the multiclass classifier were 97.3% and 96.1%, respectively, for the test dataset.

X-band CW Doppler Radar Development for Measurement of Muzzle Velocity (포구 속도 측정을 위한 X-band CW 도플러 레이더 개발)

  • Kim, Jae-Heon;Koh, Yeong-Mok;NamGung, Sung-Won;Jang, Yong-Sik;Park, Yong-Seok;Ra, Keuk-Hwan;Choi, Ik-Kwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.460-470
    • /
    • 2009
  • In this paper, we described the implementation of the X-Band continuous-wave doppler radar for muzzle velocity measurement. The radar is consisted of microwave transceiver, signal processor, power board, and the measuring program was developed for the operating and field test. The operating frequency of doppler radar is able to set ${\pm}3\;MHz$ with 5 channel from the center frequency, and the output power is 25 dBm. The minimum receiving power is -117 dBm. The radar would obtain the doppler frequency from the artillery, and calculate accurate velocity point and then estimate muzzle velocity. The performance test for this radar was done with 155 mm at barrel and tripod mounted, and also compared the performance with the reference radar. As a result, the performance of the our new radar is equal with the reference one.

Radar Image Extraction Scheme for FMCW Radar-Based Human Motion Indication (FMCW 레이다 기반 휴먼 모션 인지용 레이다 영상 추출 기법)

  • Hyun, Eugin;Jin, Young-Seok;Jeon, Hyeong-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.411-414
    • /
    • 2018
  • In this paper, we propose a radar image extraction scheme for frequency modulated continuous wave radar-based human motion indication. We extracted three-dimensional(3D) range-velocity-angle spectra and generated three micro-profile images by compressing the 3D images in all three directions in every frame. Furthermore, we used body echo suppression to make use of the weak reelection such as in hands and arms. By applying the complete images to classifiers, various human motions can be indicated.

Performance Analysis of 16 star-QAM with Diversity Reception in Microcell Systems (마이크로셀 시스템에서 다양성 기법을 도입한 16 star-QAM의 성능 해석)

  • 지수복;고봉진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.1-9
    • /
    • 2000
  • This paper presents the error performance of 16 star-QAM with diversity reception in microcell systems in the presence of additive white Gaussian noise(AWGN) and cochannel interference. The differential detection of 16 star-QAM is split into phase detection and amplitude detection. This technique can reduce the degradation of error performance which is due to fading and the complexity of receiver. Diversity reception is proposed to improve the degradation of error performance due to fading. Equal gain and maximal ratio combinings were adopted for the phase detection and the amplitude detection, respectively. The performance of 16 star-QAM was evaluated for various of Rician factor K, maximum Doppler frequency f_DT, signal to cochannel interference ratio and diversity branch L.

  • PDF