Proceedings of the Korean Information Science Society Conference
/
2006.06a
/
pp.22-24
/
2006
마이크로어레이는 전체 유전체 수준의 mRNA 발현 여부에 대한 측정이 가능하다는 점에서 분자생물학의 실험 도구로서 가장 강력한 도구 중에 하나로 부각되어 있다. 현재까지 마이크로어래이의 결과로부터 유사한 발현 패턴을 찾기 위한 여러 가지 바이클러스터링 알고리즘들이 개발되어 왔다. 하지만 대다수의 알고리즘들이 최적의 바이클러스터들을 찾기보다는 일정 수준의 가능한 바이클러스터의 결과만을 제시하고 있다. 본 논문에서는 다른 개체집단들과 상호 진화하는 공진화적 학습에 의한 진화연산 기법을 통하여 유전자-조건의 매트릭스로부터 열과 행을 동시에 클러스터링하는 공진화적 바이클러스터링 알고리즘(co-evolutionary biclustering algorithm: CBA)을 제안하고자 한다. CBA는 유전자발현 데이터에서 유전자-조건의 상호의존적인 부성분들로 구성된 최적화 문제에 적합한 계산방식이라고 할 수 있다. 인간 유전자 발현 데이터에 대한 실험 결과. 제시한 알고리즘은 이전의 알고리즘에 비해 발견한 바이클러스터의 패턴 유사도에 있어서 우수한 성능을 보이고 있다.
Kim, Kyung-Sook;Oh, Mi-Ra;Baek, Jang-Sun;Son, Young-Sook
The Korean Journal of Applied Statistics
/
v.21
no.2
/
pp.275-290
/
2008
The size of microarray gene expression data is very big and its observation process is also very complex. Thus missing values are frequently occurred. In this paper we propose the sequential partial least squares(SPLS) regression fitting method to estimate missing values for time course gene expression data that has correlations among observations over time points. The SPLS method is to combine the sequential technique with the partial least squares(PLS) regression fitting method. The usefulness of method proposed is evaluated through some simulation study for three yeast time course data.
In microarray data analysis, recent efforts have focused on the discovery of gene sets from a pathway or functional categories such as Gene Ontology terms(GO terms) rather than on individual gene function for its direct interpretation of genome-wide expression data. We introduce a meta-analysis method that combines $p$-values for changes of each gene in the group. The method measures the significance of overall treatment-induced change in a gene group. An application of the method to a real data demonstrates that it has benefits over other statistical methods such as Fisher's exact test and permutation methods. The method is implemented in a SAS program and it is available on the author's homepage(http://cafe.daum.net/go.analysis).
In the analysis of microarray data with a small number of arrays, the most important task is the detection of differentially expressed genes by a significance test. For this purpose, one needs to construct a null distribution based on a large number of genes and one of the best way for constructing the null distribution for a small number of arrays is by means of permutation methods. In this paper we propose simple test statistics and permutation methods that are appropriate in constructing the null distribution. In a simulation study, we compare the null distributions generated by the proposed test statistics and permutation methods with the previous ones. With an example microarray data, differentially expressed genes are determined by applying these methods.
Abiotic stress conditions such as cold, drought, and salinity trigger physiological and morphological changes and yield loss in plants. Hence, plants adapt to adverse environments by developing tolerance through complex regulation of genes related to various metabolic processes. This study was conducted to construct a coexpression network for multidirectional analysis of salt-stress response genes in Brassica rapa (Chinese cabbage). To construct the coexpression network, we collected KBGP-24K microarray data from the B. rapa EST and microarray database (BrEMD) and performed time-based expression analyses of B. rapa plants. The constructed coexpression network model showed 1,853 nodes, 5,740 edges, and 142 connected components (correlation coefficient > 0.85). On the basis of the significantly expressed genes in the network, we concluded that the development of salt tolerance is closely related to the activation of $Na^+$ transport by reactive oxygen species signaling and the accumulation of proline in Chinese cabbage.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.6
/
pp.802-808
/
2009
Recently many researches have been presented to improve the clustering performance of gene expression data by incorporating Gene Ontology into the process of clustering. In particular, Kustra et al. showed higher performance improvement by exploiting Biological Process Ontology compared to the typical expression-based clustering. This paper extends the work of Kustra et al. by performing extensive experiments on the way of incorporating GO structures. To this end, we used three ontological distance measures (Lin's, Resnik's, Jiang's) and three GO structures (BP, CC, MF) for the yeast expression data. From all test cases, We found that clustering performances were remarkably improved by incorporating GO; especially, Resnik's distance measure based on Biological Process Ontology was the best.
The development of microarray technology has supplied a large volume of data to many fields. In particular, it has been applied to prediction and diagnosis of cancer, so that it expectedly helps us to exactly predict and diagnose cancer. It is essential to efficiently analyze DNA microarray data because the amount of DNA microarray data is usually very large. Since accurate classification of cancer is very important issue for treatment of cancer, it is desirable to make a decision by combining the results of various expert classifiers rather than by depending on the result of only one classifier. Generally combining classifiers gives high performance and high confidence. In spite of many advantages of ensemble classifiers, ensemble with mutually error-correlated classifiers has a limit in the performance. In this paper, we propose the ensemble of neural network classifiers learned from negatively correlated features using three benchmark datasets to precisely classify cancer, and systematically evaluate the performances of the proposed method. Experimental results show that the ensemble classifier with negatively correlated features produces the best recognition rate on the three benchmark datasets.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.359-361
/
2003
정확한 암의 분류는 암의 진단 및 치료에 있어 매우 중요하지만, 암을 진단하기 위한 기존의 여러 방법들은 종종 불완전한 결과를 도출한다. 최근의 마이크로어레이 기술에 기반한 분자 수준의 진단은 정확하고 객관적이며 체계적인 암의 분류를 위한 방법론을 제시해준다. 유전자 발현 데이터는 일반적으로 수천개 이상의 유전자를 포함하는데, 유전자 발현 데이터의 모든 유전자가 암과 관련이 있는 것이 아니므로 정확한 암을 분류하기 위하여 중요한 유전자만을 추출하는 것이 바람직하다. 본 논문에서 음의 상관관계를 갖는 두 개의 이상적인 유전자 벡터를 정의한 후 이와 유사한 정도를 기준으로 중요한 유전자 집단을 추출하고, 각각을 신경망으로 학습하여 결합하는 신경망 쌍을 제안한다. 실험 결과는 음의 상관관계를 갖는 두 개의 유전자 집단이 암의 클래스를 잘 구분할 수 있음을 보여주었다. 이 유전자 집단을 특징으로 하여 각각 학습한 신경망을 베이시안 방법으로 결합한 결과, 벤치마크 데이터에 대하여 신경망 쌍이 개별 분류기에 비해 우수한 성능을 보임을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.277-279
/
2005
DNA 마이크로어레이 기술의 발전으로 유전자 발현에 대한 많은 양의 정보가 쏟아지게 되었고, 이러한 정보들을 이용하여 유전자 조절 네트워크를 수학적으로 모델링하는 것이 시스템 생물학의 중요 관심사로 떠오르고 있다. 본 논문에서는 실험에서 얻어낸 데이터를 유전 프로그래밍을 이용한 기호 회귀를 통해 데이터 지점을 조정하고 유전 프로그래밍의 결과 함수를 이용해 각 지점에서의 미분값을 얻어내었다. 그 뒤, 불리안 네트워크를 표현하는 이진 배열과 S-시스템을 표현하는 실수 배열을 결합한 해를 사용하는 유전 알고리즘으로 앞에서 얻은 데이터를 이용해 원하는 S-시스템의 구조와 매개변수를 구해내었다.
Proceedings of the Korea Information Processing Society Conference
/
2002.11a
/
pp.351-354
/
2002
최근 생명공학 기술과 분석화학 기술의 발달로 생물 유전 데이터를 대량으로 얻는 것이 가능하게 되었다. 아울러 이렇게 얻어진 데이터를 적절하게 처리하고 분석하는 방법들도 여러 가지가 소개되어 왔다. 본 논문에서는 DNA 마이크로어레이 정보를 분류하기 위하여 세 가지 데이터에 대하여 여러 가지 특징 전혀 방법으로 선택된 유전자들을 사용하여 신경망 분류기에 적용시켜 보았다. 실험 결과 백혈병 데이터의 경우 피어슨 상관계수를 이용한 분류가 97.1%로 가장 높은 인식률을 보여주었다. 한편 여러 가지 특징 선택 방법에 의하여 공통적으로 선택된 유전자를 사용하여 분류하면 더 높은 인식률이 나올 것 같았지만 실제로는 기대에 못 미치는 성과를 보여주었다. 따라서 무조건 여러 번 선택된 특징을 선택하기 보다는 특징들끼리의 상관관계를 고려하여 선택하는 방법이 필요할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.